
Version 14.1

The tool of thought for expert programming

Dyalog Release Notes

Dyalog is a trademark of Dyalog Limited

Copyright © 1982-2015 by Dyalog Limited

All rights reserved.

Version: 14.1

Revision: 1585 dated 20230217

Nopart of this publicationmay be reproduced in any form by any means without the prior written per-
mission of Dyalog Limited.

Dyalog Limitedmakes no representations or warranties with respect to the contents hereof and spe-
cifically disclaims any impliedwarranties of merchantability or fitness for any particular purpose.
Dyalog Limited reserves the right to revise this publicationwithout notification.

email: support@dyalog.com
http://www.dyalog.com

TRADEMARKS:

SQAPL is copyright of Insight Systems ApS.

UNIX is a registered trademark of The OpenGroup.

Windows, Windows Vista, Visual Basic andExcel are trademarks of Microsoft Corporation.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Mac OS® andOSX® (operating system software) are trademarks of Apple Inc., registered in the U.S.
and other countries.

Array Editor is copyright of davidliebtag.com

All other trademarks and copyrights are acknowledged.

iii

Contents

Chapter 1: Introduction 1
Key Features 1
High DPI Support 3
Gestures 8
High-Priority Callback Functions 10
WPFData Binding Using Matrices 12
System Requirements 23
Inter-operability 24
Announcements 29
Performance Improvements 31
Bug Fixes 34

Chapter 2:Component File Improvements 35
File Create and Variant 35
File Copy and Variant 36

Chapter 3:Miscellaneous 37
IDE Enhancements 37
Workspaces without File Extensions 38
Improved Thread Support forWPF 40
Removal of HelpURL fromDMX 41
New Parameters 42

Chapter 4: LanguageReferenceChanges 45
Disposable Statement 45
Arbitrary Input 48
Arbitrary Output 50
Edit Object 51
File Create 53
File Copy 55

Chapter 5: I-BeamReferenceChanges 57
Execute Expression 59
Overwrite Free Pockets 60
Called Monadically 61
Loaded Libraries 62
Identify NET Type 63

iv

Set Dyalog Pixel Type 64
Close .NET AppDomain 65
Mark Thread as Uninterruptible 66
Use Separate Thread For .NET 67
Send Text to RIDE-embedded Browser 68
Connected to the RIDE 68
Enable RIDE in Run-time Interpreter 69
JSON Import 70
JSON Export 76
JSON TrueFalse 78
JSON Translate Name 79
Line Count 81

Chapter 6:ObjectReferenceChanges 83
Coord 83
GesturePan 86
GesturePressAndTap 88
GestureRotate 90
GestureTwoFingerTap 92
GestureZoom 93
Event 95
Masked 109
Native Look and Feel 110

Chapter 7:UNIX Specific Features 111
Summary 111

Index 113

Chapter 1: Introduction 1

Chapter 1:

Introduction

Key Features
Dyalog APL Version 14.1 provides the following new features, enhancements and
changes:

Performance Improvements
Version 14.1 includes a considerable amount of research and development work
designed to substantially improve speed of execution. See Performance Improve-
ments on page 31.

Language Enhancements
New Language Features

l New :Disposable ... :EndDisposable control structure for the
automatic disposal of unwanted .NET objects and resources. See Disposable
Statement on page 45.

New I-Beam Features
l A new I-Beam is provided to execute expressions under program control,

which handles shy results differently than the primitive function monadic
Execute. See Execute Expression on page 59.

l A new I-Beam is provided to overwrite unused memory in the workspace in
order to erase potentially secure data. See Overwrite Free Pockets on page
60.

l A new I-Beam is provided to determine whether or not the current function
was called monadically. See Called Monadically on page 61.

l A new I-Beam is provided to report the names of dynamic link libraries
loaded by ⎕NA. See Loaded Libraries on page 62.

l A new I-Beam is provided to make a thread uninterruptible. See Mark
Thread as Uninterruptible on page 66.

Chapter 1: Introduction 2

l A new I-Beam is provided to spawn a .NET thread from APL thread 0. See
Use Separate Thread For .NET on page 67.

l A new I-Beam function provides a faster way to reference early elements of
⎕LC. See Line Count on page 81.

l Four new I-Beams are provided to import and export text in JavaScript
Object Notation (JSON) Data Interchange Format1. See I-Beam Changes on
page 57.

Extensions
l There are 2 new options for Edit Object (⎕ED). See Variants of Edit Object

on page 52.
l The arbitrary input and output system functions have been simplified and

re-engineered, primarily for use in non-Windows environments. See Arbit-
rary Input on page 48 and Arbitrary Output on page 50.

Component File System Improvements
l File properties S and U have been added to the properties that may be set

when the file is created using a function derived from ⎕FCREATE and the
Variant operator ⍠. See File Create and Variant on page 35.

IDE Enhancements
l The editor can now be used to view the values of ⍺, ⍺⍺, ⍵ and ⍵⍵. See Tra-
cing dfn Arguments on page 37.

l Align Comments has been extended to scripted objects. See Aligning Com-
ments in Scripts on page 37Aligning Comments in Scripts on page 37.

GUI Enhancements
l Version 14.1 provides a new coordinate system that automatically scales

GUI windows and controls created by ⎕WC according to the scale factor set
by the user's Desktop Windows Manager. See High DPI Support on page 3.

l Version 14.1 provides support for Windows Gestures. A workspace ges-
turedemo.dws is provided to illustrate how to use this new feature (touch-
screen required). See Gestures on page 8.

l The Masked property has been extended to provide greater portability for
ImageLists. See Masked on page 109.

l WPF Data Binding now supports matrices. See WPF Data Binding Using
Matrices on page 12.

1IETF RFC 7159

Chapter 1: Introduction 3

High DPI Support
Modern high resolution screens present some practical challenges to a Graphical
User Interface that was designed when lower-resolution screens were the norm.When
you increase resolution you inherently decrease the size of each pixel (assuming
same display size). By decreasing the size of each pixel the content shown on the dis-
play appears smaller. When display Dots-Per-Inch (DPI) gets sufficiently dense this
shrinking effect can make content hard to see and user interface components such as
menus and buttons, difficult to click/tap.

Also, people have different preferences and Windows enables the user to change the
DPI setting.

To address this issue, the Desktop Window Manager, which is enabled in Windows
Vista and above, automatically scales up windows and their content to match the cur-
rent DPI setting.

The problem with this approach is that, because the scaling is implemented by bit-
map stretching, application user-interfaces windows tend to look fuzzy and/or dis-
torted.

Chapter 1: Introduction 4

DPI-Awareness
To prevent the DWM from stretching its user-interface, a Windows application can
declare itself to be DPI-Aware. If so, the application is expected to handle DPI issues
itself. Whether it does so by scaling GUI components according to the DPI in use, or
not, is up to the application itself. If an application chooses to register itself as DPI-
aware, but fails to scale its GUI components on a high DPI device, they will simply
appear physically smaller on the screen.

An application can declare itself as being DPI-Aware by making a system call or by
making a declaration in the optional XMLmanifest file that may be associated with
its .exe.

Dyalog APL will register itself as being DPI-Aware on startup if the value of the
AUTODPI parameter is 1. This is the default, so in a standard developer installation,
Dyalog APL itself and all Dyalog applications driven by the development and run-
time versions of Dyalog are by default registered as DPI-Aware, so DPI scaling by the
DWM is disabled.

This can be changed by setting the AUTODPI parameter to 0 (or by removing it) or
using a declaration in a manifest file. See Enabling DWM Scaling on page 6.

Coord Property
Dyalog APL includes a mechanism to automatically scale a pixel coordinate user-
interface according to the DPI setting. This works by introducing two new coordin-
ate types named ScaledPixel and RealPixel and by changing the way that the exist-
ing Pixel coordinate type is interpreted.

ScaledPixel means that the number of pixels specified will be automatically scaled
by Dyalog APL according to the user's chosen display scaling factor. ScaledPixel
also means that Dyalog will automatically de-scale coordinate values reported by
⎕WG and coordinate values in event messages.

RealPixel means that Dyalog APL will precisely honour the number of pixels you
specify and will apply no scaling. GUI windows and components will simply appear
physically smaller on higher DPI devices.

The Dyalog Session uses Coord 'ScaledPixel' and all the GUI components of
the Session are therefore DPI-scaled by Dyalog itself.

Chapter 1: Introduction 5

Pixel Coordinates and DYALOG_PIXEL_TYPE
Dyalog Versions prior to Version 14.1 did not support ScaledPixel and RealPixel
options; just Pixel. Rather than force users to change all pixel coordinate types in leg-
acy applications, Dyalog provides a parameter named DYALOG_PIXEL_TYPE
whose value is either ScaledPixel or RealPixel. If the value of the Coord property is
'Pixel' this is interpreted as meaning whichever value is specified by DYALOG_
PIXEL_TYPE.

If the DYALOG_PIXEL_TYPE parameter is not specified (the default), it defaults
to RealPixel. So by default, Coord 'Pixel', will be treated as RealPixel and your
Dyalog APL GUI application will simply appear physically smaller on higher DPI
devices.

DYALOG_PIXEL_TYPE may be set to ScaledPixel by ticking the check-box on
the General Tab of the Configuration Dialog box labelled Enable DPI Scaling of
GUI application.

If this check-box is cleared the DYALOG_PIXEL_TYPE parameter will be
removed from the current user's registry.

Using ScaledPixel coordinates, if you specify an Edit object to be 80 units wide and
20 units high, and the user's scaling factor is 150%, Dyalog will automatically draw
it 120 pixels wide and 30 pixels high. You won't have to change any of your code
that handles the Edit, it will just appear larger on the screen than if it hadn't been
scaled. Similarly, if you use the ScaledPixel coordinate type for the Font object, the
font used to draw text in the object will automatically be scaled for you.

Font Object
The Font object has a Coord property which may be set to 'Pixel',
'ScaledPixel' or 'RealPixel' when the object is created, but may not sub-
sequently be changed. Note that the Font object does not support other Coord values.
'Pixel' is treated as 'ScaledPixel' or 'RealPixel' as discussed above.

If you are using 'ScaledPixel', this means that your fonts will also be scaled up
automatically, as well as the sizes of the controls in which they are used.

Set Dyalog Pixel Type (2035⌶)
This function provides the means to set the meaning of Coord 'Pixel' pro-
grammatically and dynamically. This function affects the way that Pixel coordinates
are subsequently treated. For further information, see Language Reference: Set
Dyalog Pixel Type.

Chapter 1: Introduction 6

Enabling DWM Scaling
The DPI-Aware scaling features provided by Dyalog APL are designed to allow you
to deploy GUI applications that look attractive in most situations, whatever the
screen resolution and scaling factor is in use.

However, if you wish to ignore these facilities and fall back on Windows
DWM scaling, you may do so as follows.

If you wish to enable DWM scaling in your application, you can either remove or set
to zero the AUTODPI parameter. For example, the command line to start a run-time
application might be:

dyalogrt.exe myruntime.dws AUTODPI=0

This will prevent Dyalog from registering your application as DPI-Aware in start-up.

Another way to enable DWM scaling is to use a manifest file. Note that if you dis-
able DWM scaling for the development version of Dyalog APL, the appearance of
the Session window may be imperfect.

Using a Manifest
A Windows application can declare itself to be DPI-aware or not using a declaration
in the optional XMLmanifest file associated with its .exe. If you want your Dyalog
APL application to be automatically scaled by the DWM, you may use a manifest
file to override the call that Dyalog itself makes to register itself as being DPI-Aware.

This is done by setting the XML entitly dpiAware to the value false as illustrated by
the skeleton manifest file listed below.

<assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersio
n="1.0" xmlns:asmv3="urn:schemas-microsoft-com:asm.v3" >
<asmv3:application>
<asmv3:windowsSettings xmlns="http://schemas.microsoft.com/SMI

/2005/WindowsSettings">
<dpiAware>false</dpiAware>

</asmv3:windowsSettings>
</asmv3:application>
</assembly>

If dpiAware appears in the manifest file, its value take precedence over the value of
the AUTODPI parameter, whether it is specified implicitly by omission (it defaults
to 1) or is specified in the registry or on the command line.

Chapter 1: Introduction 7

Naming a Manifest File
The name of the manifest file is the full name of the application file followed by an
optional resource id (if omitted, the default is 1) and the extension .manifest. If
your application runs courtesy of the dyalogrt.exe or dyalogrt.dll, the name of the
manifest file should be one of:

dyalogrt.exe.<resource ID>.manifest
dyalogrt.dll.<resource ID>.manifest

If you have exported your application as an executable called example.exe or or as a
dll called example.dll, it should be one of:

example.exe.<resource ID>.manifest
example.dll.<resource ID>.manifest

Chapter 1: Introduction 8

Gestures
Introduction
Gestures are user interactions that are most commonly generated by touching and
moving fingers on the screen, although other means (e.g. touch pad, stylus) may be
used to perform the same operations.

The following Gestures are supported by Dyalog APL:

Gesture Description

Pan The user touches one or two fingers on the screen and drags or
swipes them.

Zoom The user touches two fingers on the screen and moves them towards
each other (zoom out) or away from each other (zoom in).

Rotate The user touches two fingers on the screen and then twists them as
if turning a knob.

Tap The user taps (touches briefly) one or two fingers on the screen.

Press
and Tap

The user presses one finger on the screen, then taps the screen with
a second finger, while the first finger remains in contact with the
screen.

Gesture Events
Gestures generate GUI events, which are summarised in the table below.

Apart from GestureTwoFingerTap, which generates a single event, Gestures generate
a series of events of the same type. The first of these is flagged as a starting event.
Then there are a series of one or more continuation events, followed finally by one
that is flagged as the final event in the series. Each series consists of events of the
same type and no other type of event will be reported between the start and end of
that series.

Chapter 1: Introduction 9

Event Description

GesturePan One or more of these events are generated by a Pan
Gesture.

GestureRotate One or more of these events are generated by a Rotate
Gesture.

GestureZoom One or more of these events are generated by a Zoom
Gesture.

GesturePressAndTap This event is generated by a Press and Tap Gesture.

GestureTwoFingerTap This event is generated by a Tap Gesture using two
fingers.

Handling Gestures
Gestures do not in themselves do anthing by default, but if left unhandled, may gen-
erate other events which do do something by default. For example, an unhandled Pan
Gesture on a scrollbar will, by default, cause it to scroll.

An application can choose to handle Gesture events in a specifically application-
dependent manner or choose to ignore them, relying on objects to respond to mouse
or scroll events (which are generated by unhandled Gesture events) as appropriate.

In Dyalog APL, a Gesture event is handled by attaching a callback function which
responds to the event in some way. The result of the callback function is important.
The value 0 tells the Operating System that the application has handled (consumed)
the event and instructs Windows NOT to take any further action. The value 1 means
that the application has not taken action and instructs Windows to do whatever it
would normally do in response to the Gesture; for example, to treat it as a mouse or
scroll operation.

If you attach a callback to the GesturePan event which responds by, for example,
moving the object, the callback should return 0. See also: High-Priority Callback
Functions on page 10.

Inertia
When a Pan gesture is made, the operating systemmay generate additional Ges-
turePan events depending upon the speed with which the Gesture has been made. For
example, if the user makes a short but rapid swiping motion with a finger, inertia gen-
erates GesturePan events over a greater distance than the finger was actually in con-
tact with the screeen. Information as to whether or not the event was generated by
inertia is provided in the event message.

Chapter 1: Introduction 10

High-Priority Callback Functions
A high-priority callback function is one that is invoked by a high-priority event
which demands that Dyalog must return a result to the operating system before it may
process any other event. Such high-priority events include Configure, ExitWindows,
DateTimeChange, DockStart, DockCancel, DropDown, GetTipText, GesturePan,
GestureZoom, GestureRotate, GestureTwoFingerTap, GesturePressAndTap.

If a high-priority callback function is traced or stops for any reason, the system is in
limbo until the windows notification has been actioned. This will occur only when
the callback exits. During this time, it is not possible to reset the state indicator or
save the workspace. In the following example, there is a deliberate error on GenCB
[2] which is assigned as the callback function for the GesturePan event on object
f.s1.

f.s1.onGesturePan←'GenCB'

∇ GenCB m
[1] m
[2] ∘

∇

[user drags finger in object]

#.f.s1 GesturePan 1 84 103 0 0
SYNTAX ERROR
GenCB[2] ∘

∧
)si

#.GenCB[2]*
⎕DQ

→
DOMAIN ERROR: Operation cannot be completed with an "exte
rnal" call on the stack

→
∧
)reset

Can't)RESET with external call on the stack.
)clear

Can't)CLEAR with external call on the stack.
)save

Cannot perform operation with calls to or from external f
unctions or certain callbacks.

The only way to restore the situation to normal is to force the callback function to
exit. For example:

→0
)si

Chapter 1: Introduction 11

Furthermore, it is therefore not permitted to use a :Hold control structure in a high-
priority callback function and Dyalog cannot perform thread-switching during the
execution of a high-priority callback.

Chapter 1: Introduction 12

WPF Data Binding Using Matrices
WPFData Binding has been extended to allow you to bind APL matrices. The
example shown later in this section, Example 8, is an addition to the existing doc-
umentation on WPFData Binding. See .NET Interface Guide: Windows Presentation
Foundation.

Binding a Matrix
Binding a matrix is like binding a vector of namespaces. Each row of Y represents
one of a collection of instances of an object, which exports a particular set of prop-
erties for binding purposes. Each column of Y represents one of these properties.

Every row in the datasource will be of the same type (which might not be the case
with an array of namespaces), and so the collection is a collection of specific things.
The specific thing is a .Net type that is created dynamically and has a unique name.

Unlike variables in namespaces, the columns of an APL matrix do not have names
which can be exported as properties, so this information must be provided in the left
argument to (2015⌶) which also specifies their data types. If the left argument is
omitted, the default names are Column1, Column2, ... and so forth and the default
data type is System.Object.

So if the right argument of (2015⌶) Y is the name of a matrix, the left argument X is
a matrix with as many rows as there are columns in Y. X[;1] contains the names by
which each of the columns of Y will be exported as a property, and X[;2] their data
types.

Values in the matrix may be scalar numbers, character scalars or vectors, or nested vec-
tors, but each column in the matrix must be uniform.

The result R is a specific type that is created dynamically and assigned a unique name
of the form Dyalog.Data.DyalogCollectionNotifyHandler`1
[Dyalog.Data.DataBoundRow_nnnnnnnn]. This is suitable for binding to a
WPF property that requires an IEnumerable implementation, such as the
ItemsSource property of the DataGrid.

Chapter 1: Introduction 13

Example
mat is a matrix of numbers and is bound with default property/column names
Column1, Column2, ... Column10 and the default data type of System.Object.

mat←?20 10⍴100
bindSource←2015⌶'mat'

Example
winelist is a matrix whose first column contains a list of wines, and whose
second column their prices. The left argument is a matrix. Its first column specifies
the property names by which the columns will be exported ('Name' and 'Price')
and its second column , their data types (System.Object)

winelist←Wines,[1.5]0.01×10000+?(⍴Wines)⍴10000
info←(⍪'Name' 'Price'),⊂Object

bindSource←info(2015⌶)'winelist'

Example
emp is a 3-column matrix which contains names, numbers and addresses. Each
address is made up of two character vectors containing street and town

emp
┌───────────────────┬──────────────────┬────────────────────┐
│John Smith │Mary White │T.W. Penk │
├───────────────────┼──────────────────┼────────────────────┤
│1 │2 │3 │
├───────────────────┼──────────────────┼────────────────────┤
│┌─────────┬───────┐│┌──────────┬─────┐│┌──────────┬───────┐│
││2 East Rd│Headley│││42 High St│Alton│││23 West St│Farnham││
│└─────────┴───────┘│└──────────┴─────┘│└──────────┴───────┘│
└───────────────────┴──────────────────┴────────────────────┘

schema
┌───────┬────────────────────────┐
│Name │(System.Object) │
├───────┼────────────────────────┤
│Number │(System.Object) │
├───────┼────────────────────────┤
│Address│┌──────┬───────────────┐│
│ ││Street│(System.Object)││
│ │├──────┼───────────────┤│
│ ││Town │(System.Object)││
│ │└──────┴───────────────┘│
└───────┴────────────────────────┘

bindSource←schema(2015⌶)'emp'

Chapter 1: Introduction 14

Example 8
This example illustrates data binding using a matrix and is practically identical to
Example 7 except that it uses a matrix instead of a vector of namespaces.

Each row in the WPF DataGrid control is represented by an object, and each
column as a property of that object. Each row in the DataGrid is bound to an
object in the data source, and each column in the data grid is bound to a property of
the data object.

Chapter 1: Introduction 15

The XAML
The XAML shown below, describes a Window containing a DockPanel, inside
which is a DataGrid. The XAML is identical to the XAML in Example 7, except
for the window caption.

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentat

ion"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="DataGrid Matrix Example" Height="500"
SizeToContent="Width"
Topmost="true">
<DockPanel>

<DataGrid Name="DG1" ItemsSource="{Binding}"
AutoGenerateColumns="False" >

<DataGrid.Columns>
<DataGridTextColumn Header="Wine"
Binding="{Binding Name}"/>
<DataGridTextColumn Header="Price"
Binding="{Binding Price, StringFormat=C}" />

</DataGrid.Columns>
</DataGrid>

</DockPanel>
</Window>

The phrase ItemsSource="{Binding}" states that the content of the
DataGrid is bound to a data source, which in this case will be inherited from the
DataContext property of the parent Window.

Binding="{Binding Name}" specifies that the contents of the first column are
bound to a Path named Name in the data source.

Similarly, Binding="{Binding Price, StringFormat=C}" specifies that
the Path for the second column is Price (StringFormat=Cmerely specifies the
default currency format).

The APL Code
The function Grid is shown below.

∇ Grid;⎕USING;MySource;win;info
[1] ⎕USING←'System'
[2] ⎕EX'winelist'
[3] winelist←Wines,[1.5]0.01×10000+?(⍴Wines)⍴10000
[4] win←LoadXAML XAML
[5] info←(⍪'Name' 'Price'),⊂Object
[6] win.DataContext←info(2015⌶)'winelist'
[7] win.Show

∇

Chapter 1: Introduction 16

As in Example 7, the global variable Wines contains a vector of character vectors,
each of which is the name of a wine.

Grid[2-4] creates a matrix winelist, whose first column contains the names of
the wines, and whose second column their (randomly generated) prices. As this is a
global variable, the variable is expunged before being used in order to remove any
previous data binding information that was associated with it.

Grid[5] creates the left argument for (2015⌶) which defines the names and data
types of the properties which the columns of the matrix winelist will be exposed
as. In this case, the names of the paths are Name and Price, and therir data types are
both System.Object. So the first column will be exposed as Name and the second
as Price, matching the path names specified in the XAML:

<DataGridTextColumn Header="Wine"
Binding="{Binding Name}"/>
<DataGridTextColumn Header="Price"
Binding="{Binding Price, StringFormat=C}" />

Testing the Data Binding
)LOAD wpfintro
)CS DataBinding.DataGridMatrix
Grid

Chapter 1: Introduction 17

Chapter 1: Introduction 18

Let's round the prices to the nearest $5.

winelist[;2]←5×⌊0.5+winelist[;2]÷5

Chapter 1: Introduction 19

Using Code
The same result can be achieved using code instead of XAML as illustrated by the
function GridCodeNoFmt. The function is so-named because this code is insuf-
ficient to display the second column in currency format.

∇ GridCodeNoFmt;⎕USING;MySource;win;info;fmt
[1] ⎕USING←'System'
[2] ⎕USING,←,⊂'System.Windows.Controls,WPF/PresentationFramewo
rk.dll'
[3] ⎕USING,←⊂'System.Windows.Controls.Primitives,WPF/Presentat
ionFramework.dll'
[4] ⎕USING,←⊂'System.Windows,WPF/PresentationFramework.dll'
[5] ⎕USING,←⊂'System.Windows,WPF/PresentationCore.dll'
[6]
[7] ⎕EX'winelist'
[8] winelist←Wines,[1.5]0.01×10000+?(⍴Wines)⍴10000
[9] win←⎕NEW Window
[10] win.Title←'DataGrid Matrix (Code)'
[11] win.grid←⎕NEW DataGrid
[12] info←(⍪'Name' 'Price'),⊂Object
[13] win.grid.ItemsSource←info(2015⌶)'winelist'
[14] win.grid.Height←500
[15] win.Content←win.grid
[16] win.SizeToContent←SizeToContent.WidthAndHeight
[17] win.Show

∇

This is because by default the DataGrid generates its columns automnatically with
default formatting.

Chapter 1: Introduction 20

In order to apply special formatting to one or more columns, it is necessary to set the
AutoGenerateColumns property to 0, and to generate the columns pro-
gramatically as is shown in the second version of the function, GridCode.

Chapter 1: Introduction 21

∇ GridCode;⎕USING;MySource;win;info;fmt
[1] ⎕USING←'System'
[2] ⎕USING,←,⊂'System.Windows.Controls,WPF/Presentatio
nFramework.dll'
[3] ⎕USING,←⊂'System.Windows.Controls.Primitives,WPF/P
resentationFramework.dll'
[4] ⎕USING,←⊂'System.Windows,WPF/PresentationFramework
.dll'
[5] ⎕USING,←⊂'System.Windows,WPF/PresentationCore.dll'
[6]
[7] ⎕EX'winelist'
[8] winelist←Wines,[1.5]0.01×10000+?(⍴Wines)⍴10000
[9] win←⎕NEW Window
[10] win.Title←'DataGrid Matrix (Code with Formatting)'
[11] win.grid←⎕NEW DataGrid
[12] info←(⍪'Name' 'Price'),⊂Object
[13] win.grid.ItemsSource←info(2015⌶)'winelist'
[14] win.grid.Height←500
[15] win.grid.AutoGenerateColumns←0
[16] win.Content←win.grid
[17] win.SizeToContent←SizeToContent.WidthAndHeight
[18] ⍝ Add columns and set format
[19] win.grid.Columns.Add¨'' 'C'{
[20] col←⎕NEW DataGridTextColumn
[21] col.Header←⍵
[22] col.Binding←⎕NEW Data.Binding(⊂⍵)
[23] col.Binding.StringFormat←,⍺
[24] col
[25] }¨'Name' 'Price'
[26]
[27] win.Show

∇

In this version of the function, lines [19-25] create the two columns Name and
Price, applying currency format to the Price column.

Chapter 1: Introduction 22

Chapter 1: Introduction 23

System Requirements
Microsoft Windows
Dyalog APL Version 14.1 supports versions ofWindows fromMicrosoft Windows
XP up to and including Microsoft Windows 8.1 and Microsoft Windows Server
2012. Dyalog APL Version 14.1 will not run on earlier versions.

Microsoft .NET Interface
Dyalog APL Version 14.1 .NET Interface requires Version 2.x or greater of the
Microsoft .NET Framework. It does not operate with .NET Version 1.0.

ForWindows Presentation Foundation (WPF) and basic Data Binding, Version 14.1
requires .NET Version 4.0.

For full Data Binding support (including support for the
INotifyCollectionChanged interface1), and Syncfusion, Version 14.1
requires .NET Version 4.5.

AIX and Linux
For AIX, Version 14.1 requires AIX 6.1 or higher, and a POWER5 chip or higher.

Version 14.1 is built on RedHat 5, and runs on all recent distributions, including
Ubuntu 12.04 and openSUSE 12.3. Contact Dyalog for information about other plat-
forms.

OS X
For OS X Version 14.1 requires OS X Yosemite (10.10.x) or higher.

1This interface is used by Dyalog to notify a data consumer when the contents of a variable, that is
data bound as a list of items, changes.

Chapter 1: Introduction 24

Inter-operability
Introduction
Workspaces and component files are stored on disk in a binary format (illegible to
text editors). This format differs between machine architectures and among versions
of Dyalog. For example, a file component written by a PC may well have an internal
format that is different from one written by a UNIX machine. Similarly, a workspace
saved fromDyalog Version 14.1 will differ internally from one saved by a previous
version of Dyalog APL.

It is convenient for versions of Dyalog APL running on different platforms to be able
to interoperate by sharing workspaces and component files. FromVersion 11.0, com-
ponent files and workspaces can generally be shared between Dyalog interpreters run-
ning on different platforms. However, this is not always possible, for example:

l Component files created by Version 10.1 can often not be shared across plat-
forms, even when used by later versions.

l Small-span (32-bit) component files become read-only when opened on a
different architecture from that on which they were created.

Note however that the system function ⎕FCOPY can be used to make a logically
identical copy of an old file, but the copy will be fully inter-operable.

The following sections describe other limitations in inter-operability:

Code
Code that is saved in workspaces, or embedded within ⎕ORs stored in component
files, can generally only be read by the Dyalog version which saved them and later
versions of the interpreter. In the case of workspaces, an load (or copy) into an older
version would fail with the message:

this WS requires a later version of the interpreter.

Every time a ⎕OR object is read by a version later than that which created it, time
may be spent in converting the internal representation into the latest form. Dyalog
recommends that ⎕OR should not be used as a mechanism for sharing code or objects
between different versions of APL

Chapter 1: Introduction 25

"Ordinary" Arrays
With the exception of the Unicode restrictions described in the following para-
graphs, Dyalog APL provides inter-operability for arrays that only contain (nested)
character and numeric data. Such arrays can be stored in component files - or trans-
mitted using TCPSocket objects and Conga connections, and shared between all
versions and across all platforms.

As mentioned in the introduction, full cross-platform interoperability of component
files is only available for large-span component files.

Null Items (⎕NULL)
In Version 13.0 and earlier, an attempt to ⎕FREAD a component containing a ⎕NULL
that was created by a Version 13.1 or later Dyalog APL will generate DOMAIN
ERROR. ⎕NULLs can be shared between Version 14.1 and Versions 13.1, 13.2 and
14.0 provided that the interpreters have been patched to revision 23705 or higher.

Object Representations (⎕OR)
FromVersion 13.2 onwards, an attempt to ⎕FREAD a component containing a ⎕OR
that was created by a later version of Dyalog APL will generate DOMAIN ERROR:
Array is from a later version of APL.

32 vs. 64-bit Component Files
Large-span (64-bit-addressing) component files are inaccessible to versions of the
interpreter that pre-dated their introduction (versions earlier than 10.1).

From version 14.0 onwards it is no longer possible to create small-span (32-bit) files;
Version 14.0 and 14.1 are still able to read and write to small span files. Setting the
second item of the right argument of ⎕FCREATE to anything other than 64 will gen-
erate a DOMAIN ERROR.

Note that small-span (32-bit-addressing) component files cannot contain Unicode
data. Unicode editions of Dyalog APL can only write character data which would be
readable by a Classic edition (consisting of elements of ⎕AV).

External Variables
External variables are implemented as small-span (32-bit-addressing) component
files, and are subject to the same restrictions as these files. External variables are
unlikely to be developed further; Dyalog recommends that applications which use
them should switch to using mapped files or traditional component files. Please con-
tact Dyalog if you need further advice on this topic.

Chapter 1: Introduction 26

32 vs. 64-bit Interpreters
FromDyalog APL Version 11.0 onwards, there are two separate versions of programs
for 32-bit and 64-bit machine architectures (the 32-bit versions will also run on 64-
bit machines running 64-bit operating systems). There is complete inter-operability
between 32- and 64-bit interpreters, except that 32-bit interpreters are unable to work
with arrays or workspaces greater than 2GB in size.

Note however that underWindows a 32-bit version of Dyalog APL may only access
32-bit DLLs, and a 64-bit version of Dyalog APL may only access 64-bit DLLs. This
is a Windows restriction.

Unicode vs. Classic Editions
FromVersion 12.0 onwards, a Unicode edition is available, which is able to work
with the entire Unicode character set. Classic editions (a term which includes ver-
sions prior to 12.0) are limited to the 256 characters defined in the atomic vector,
⎕AV).

Component files have a Unicode property. When this is enabled, all characters will
be written as Unicode data to the file. The Unicode property is always off for small-
span (32-bit addressing) files, as these cannot contain Unicode data. For large-span
(64-bit addressing) component files, the Unicode property is set on by Unicode Edi-
tions and off by Classic Editions, by default. The Unicode property can subsequently
be toggled on and off using ⎕FPROPS.

When a Unicode edition writes to a component file that cannot contain Unicode
data, character data is mapped using ⎕AVU; it can therefore be read without problems
by Classic editions.

A TRANSLATION ERROR will occur if a Unicode edition writes to a non-Unicode
component file (that is either a 32-bit file, or a 64-bit file when the Unicode property
is currently off) if the data being written contains characters that are not in ⎕AVU.

Likewise, a Classic edition (Version 12.0 or later) will issue a TRANSLATION
ERROR if it attempts to read a component containing Unicode data that is not in
⎕AVU from a component file. Version 11.0 cannot read components containing
Unicode data and issues a NONCE ERROR.

A TRANSLATION ERROR will also be issued when a Classic edition)LOADs or)
COPYs a workspace containing Unicode data that cannot be mapped to ⎕AV using
the ⎕AVU in the recipient workspace.

Chapter 1: Introduction 27

TCPSocket objects have an APL property that corresponds to the Unicode property
of a file, if this is set to Classic (the default) the data in the socket will be restricted
to ⎕AV, if Unicode it will contain Unicode character data. As a result,
TRANSLATION ERRORs can occur on transmission or reception in the same way as
when updating or reading a file component.

The symbols ⍤, ⍠ and ⌸ used for the Rank, Variant and Key operators respectively
are available only in the Unicode edition. In the Classic edition, these symbols are
replaced by ⎕U2364, ⎕U2360 and ⎕U2338 respectively. In both Unicode and Clas-
sic editions Variant may be represented by ⎕OPT.

AVU changes
The implementation of the function Right in Version 13.0 led to the discovery that
⎕AVU incorrectly defined ⎕AV[59+⎕IO] as ¤ (⎕UCS 164) rather than ⊢ (Right
Tack, ⎕UCS 8866). This error has been corrected in the default ⎕AVU and in work-
space AVU.dws. If you are operating in a mixed Unicode/Classic environment, this
error will have caused earlier Classic editions to map ⎕AV[59+⎕IO] to the wrong
Unicode character (¤). This may cause TRANSLATION ERRORs when a Version
13.0 Classic system attempts to read the data, as it will not be able to represent ¤ in
the Atomic Vector.

DECFs and Complex numbers
Version 13.0 introduced two new data types; DECFs and Complex numbers.
Attempts to read components of these types in earlier interpreters will result in a
DOMAIN ERROR.

Very large array components
The maximum size (in bytes) of a component written by Version 12.1 and prior is
2GB. This is the size of the component as held on disk which may be different than
the size reported by ⎕SIZE. In Version 13.0 the maximum size of a component writ-
ten by a 64-bit interpreter is 4GB. FromVersion 13.2 onwards, the limit on the size of
arrays or components is so large that for most practical purposes, there is effectively
no limit.

An attempt to read a component greater than 2GB in 32-bit interpreters will result in
a WS FULL. An attempt to read such a component in 64-bit Versions 12.0 and 12.1
patched after 1st April 2011 will result in a NONCE ERROR; earlier patches generate
a FILE COMPONENT DAMAGED error.

Chapter 1: Introduction 28

File Journaling
Version 12.0 introduced File Journaling (level 1), and 12.1 added journaling levels 2
and 3 and checksumming. Versions earlier than 12.0 cannot tie files that have any
form of journaling or checksumming enabled. Version 12.0 cannot tie files with
journaling levels greater than 1, or checksumming enabled. Attempting to tie such
files will result in a FILE NAME ERROR. Files can be shared with earlier versions
by using ⎕FPROPS to amend the journaling and checksumming levels.

File Component Compression
Version 14.0 introduced File Component Compression; earlier versions will be able
to perform all file operation on such files with the exception of being able to
⎕FREAD any compressed component. In particular, it is possible for any earlier ver-
sion to ⎕FREPLACE a compressed component with a non-compressed one.

Attempting to read a compressed component using earlier versions of Dyalog APL
will generate an error:

l All 13.2 and 13.1.14842 and later:
DOMAIN ERROR: Array is from a later version of APL

l 13.1 before revision 14842:
FILE COMPONENT DAMAGED: Incoming array is invalid

l 13.0 and 12.1 after revision 11154:
DOMAIN ERROR

l 13.0 and 12.1 before revision 11154:
FILE COMPONENT DAMAGED

TCPSockets
TCPSockets used to communicate between differing versions of Dyalog APL are sub-
ject to similar limitations to those described above for component files. In particular
TCPSockets with 'Style' 'APL' will only be able to pass arrays that are sup-
ported by both versions.

Auxiliary Processors
A Dyalog APL process is restricted to starting an AP of exactly the same architecture.
In other words, the APmust share the same word-width and byte-ordering as its inter-
preter process.

Session Files
Session (.dse) files can only be used on the platform on which they were created and
saved.

Chapter 1: Introduction 29

Announcements
Withdrawal of Support for Version 13.1
The supported Versions of Dyalog APL are now Version 14.1, Version 14.0 and Ver-
sion 13.2. Version 13.1 and earlier are no longer supported.

.NET Support
Support for Microsoft .NET Version 2 will be dropped in the next release of Dyalog.

Planned Operating System Requirements for the next version
Dyalog expects that the next version of Dyalog will require the following minimum
platform requirements:

Operating System Version

Microsoft Windows Vista or Server 2008

AIX 6.1 on POWER 6

Linux RedHat/Centos 6 or equivalent

OS X OS X Yosemite 10.10.x

Further information will appear on the Forums as and when available.

Planned Hardware Requirements for next version
The next version of Dyalog running on Intel or AMD processors will require at lesat
SSE2 or equivalent. This affects 32 bit interpreters only.

New Method
In Version 14.0 and earlier, Dyalog APL artificially added a method named New to
all .NET objects which did not have such a member. This allowed the
APL programmer to create an instance of an object (such as in this example a
DateTime object) by executing the statements:

⎕USING←'System'
dt←DateTime.New 1949 4 30

This feature has been removed in Version 14.1. This mechanism was made redundant
by the introduction of ⎕NEW, and the following syntax should be adopted:

dt←⎕NEW DateTime (1949 4 30)

Chapter 1: Introduction 30

Uppercase Property
The UpperCase property of the Root object has been removed. This was previously
used to force property, method and event names to be reported in upper-case.

Thread Synchronisation Method (1113⌶)
1113⌶ has been removed. All operating systems supported by Dyalog APL have
semaphores, so this feature is no longer needed.

XPLookAndFeelDocker parameter
This parameter and the related check-box on the General tab of the Configuration dia-
log box have been removed.

Chapter 1: Introduction 31

Performance Improvements
The following primitives (or sub-cases thereof) are faster inVersion 14.1.

∧.= ∨.≠ +.= +.≠ ∘.≡ ∘.≢

⎕dr

⊂ ⊂[⎕io]

⍴

⍋ {⍵[⍋⍵]}

⍒ {⍵[⍒⍵]}

=\

+/ ⊢/ ⊣/ ⌈/ ⌊/

⍉

, b[i]←x

⍳ ∊ ∪ 8⌶ (≢∪)

≡⍤r ⌷⍤0 15

{⍺⍵}⌸ {⍺(≢∪⍵)}⌸ {⊂⍵}⌸ {⍺(≢⍵)}⌸ {⍺,≢⍵}⌸ {⍺}⌸ ⊣⌸

Highlights:
The interpreter now exploits some special instructions available on modern CPUs
(SSE2, SSE4, BMI2). Primitives that benefit from such exploitation include +/, ⌈/,
⌊/, ⍋, {⍵[⍋⍵]}, ⍳, ∊, ∪, ⍉.

Some primitives execute faster by exploiting the following insight: x⍳x are like ID
numbers; questions of identity on x can often be answered more efficiently on x⍳x
than on x itself. For example, x∧.=y ←→ (x⍳x)∘.=x⍳⍉y and x∘.≡y ←→
(x⍳x)∘.=x⍳y; the longer expressions used to be faster and in Version 14.1 the
short and longer expressions are equally fast.

x⍳y has special code for relational tables, matrices in which the items of a column
have the same type and same rank. (If the type is floating point, the special code is
invoked only if 0=⎕CT.)

Chapter 1: Introduction 32

The following table lists the cases for which performance improvements have been
achieved in Version 14.1.

Expression Factor Comments

x∧.=y 1.5- (x⍳x)∘.=x⍳⍉y for matrix x

⎕dr 1-3.8 AKA squeeze

(≢∪)x 2.8-∞ when x is floating point, optimized code is used
only when 0=⎕ct

b⊂[⎕io]x 1.3-42 underlies the general case of ⌸, among other
things

x{⊂⍵}⌸y 1.2

s⍴x 2 for non-pointer x which is 1, 2, 4, or 8 bytes

=\b 1.1 now as fast as ≠\b

⍋b and ⍒b 1-1.7 for boolean vector b

⍋x and ⍒x 1-1.6 for x with 1-byte items

x∧.=v 7 for non-tolerant = and vector v with 1,2,4, or 8
bytes

x≡⍤r⊢y 7 for non-tolerant ≡ and one of x or y is a single
cell with 1,2,4, or 8 bytes

⊢/ and ⊣/ 3-28 the largest factors are for boolean arguments

⌈/ and ⌊/ 2-20 on POWER6 onwards AIX systems, vectors

⌈/ and ⌊/ 1-30 on Windows and Linux systems, vectors

+/ 2-4 on POWER6 and POWER7 AIX systems, 1-byte
and 2-byte integer vectors

+/ 2-5 on Windows and Linux systems, integer vectors

x∘.≡y and
x∘.≢y

6-64 non-simple arrays x and y not requiring tolerant
comparison

Chapter 1: Introduction 33

Expression Factor Comments

⍉y 10 on Intel CPUs with BMI2, boolean matrices with
both dimensions a multiple of 8

999,b and b[1]
←999 and similar 2 any expression which blows up an array from

boolean to 16-bit integer

99,b and b[1]
←99 and similar 1.7 on Intel CPUs with BMI2, any expression which

blows up an array from boolean to 8-bit integer

x⍳y 3-6 on 4-byte major cells

y∊x 4-18 on 4-byte major cells

∪x 4-12 on 4-byte major cells

x⍳y 2-4 on k-byte major cells

x⍳y 2.5-6 on relational matrices

x(8⌶)y 1-1.5 exploit special cases for the inverted table index-
of

i⌷⍤0 15⊢x 2-250 selecting major cells

⍋x and {⍵[⍋⍵]}
x

1-1.5 grade/sort on small-range 4-byte integers

{⍺}⌸ and ⊣⌸ 5-60 special code; equivalent to extended ∪x

New Idioms
The following new idioms are recognised:

Expression Description

≢⍴
Rank. Note that ≢⍴ returns a scalar, whereas
⍴⍴ returns a 1-element vector.

Chapter 1: Introduction 34

Bug Fixes
A number of bug fixes implemented in Version 14.1 may change the way that exist-
ing code operates and are therefore documented in this section.

Change to the File Library System Function
There was an inconsistency in the result of the expression ⎕FLIB '.'. Under UNIX
it returned relative path names but underWindows it returned full path names. From
14.1 it returns relative path names under all operating systems.

'dummy1' ⎕FCREATE 1
'dummy2' ⎕FCREATE 2
'dummy3' ⎕FCREATE 3
⎕FUNTIE ⎕FNUMS

⎕FLIB '.'
.\dummy1
.\dummy2
.\dummy3

If the right argument specifies a full pathname, the results include the pathname as
before:

⎕FLIB 'c:\users\pete\desktop'
c:\users\pete\desktop\dummy1
c:\users\pete\desktop\dummy2
c:\users\pete\desktop\dummy3

Change to Scripted Objects
In previous versions of Dyalog APL it was possible to specify multiple definitions of
the same one-lined named dfn in a script, whereas multiple definitions of the same
multi-lined dfn or tradfn would generate an error. In version 14.1 the behaviour for
one-lined dfns has been brought into sync with other attempts to redefine functions
and now too generates an error.

In previous versions, the expression:

⎕fix ':class c' 'foo←{' '1}' 'foo←{' '2}' ':EndClass'

would cause an error, whereas:

⎕FIX':class c' 'foo←{1}' 'foo←{2}' ':EndClass'

would work.

In Version 14.1, both expressions correctly generate an error.

Chapter 2: Component File Improvements 35

Chapter 2:

Component File Improvements

File Create and Variant
The following properties have been added to those that may be set using the Variant
Operator:

l 'U' - Unicode; 0 or 1
l 'S' - File Size (span); 64

The principal option remains as follows; in all cases U and S are not changed.

l 0 - sets ('J' 0) ('C' 0)
l 1 - sets ('J' 1) ('C' 1)
l 2 - sets ('J' 2) ('C' 1)
l 3 - sets ('J' 3) ('C' 1)

For example,
'newfile' (⎕FCREATE ⍠3) 0

1
'SEUJCZ' ⎕FPROPS 1

64 0 1 3 1 0

Alternatively:

JFCREATE←⎕FCREATE ⍠ 3

will name a variant of ⎕FCREATE which will create component file with level 3
journaling, and checksum enabled. Then:

'newfile'JFCREATE 0
1

Chapter 2: Component File Improvements 36

File Copy and Variant
⎕FCOPY now allows you to specify properties for the new file via the variant oper-
ator ⍠ used with the following options:

l 'J' - journaling level; a numeric value.
l 'C' - checksum level; 0 or 1.
l 'Z' - compression; 0 or 1.
l 'U' - Unicode; 0 or 1
l 'S' - File Size (span); 64

The Principal Option is as follows:

l 0 - sets ('J' 0) ('C' 0)
l 1 - sets ('J' 1) ('C' 1)
l 2 - sets ('J' 2) ('C' 1)
l 3 - sets ('J' 3) ('C' 1)

Examples
newfid←'newfile' (⎕FCOPY ⍠3) 1

'SEUJCZ' ⎕FPROPS newfid
64 0 1 3 1 0

Alternatively:

JFCOPY←⎕FCOPY ⍠ 3

will name a variant of ⎕FCREATE which will create component file with level 3
journaling, and checksum enabled. Then:

newfid←'newfile' JFCOPY 1

Note: Setting ('U' 0) (no Unicode support) is discouraged as it may cause the
copy to fail with a TRANSLATION ERROR.

Chapter 3: Miscellaneous 37

Chapter 3: Miscellaneous

IDE Enhancements
Aligning Comments in Scripts
The alignment of comments has been extended to scripted objects. If the user is edit-
ing a script, selects one or more lines in the script, and chooses Align Comments from
the Session pop-up menu, the comments in the selected lines are aligned.

If no lines are selected, and the user chooses Align Comments:

l If the cursor is in a line of a function or operator, all of the comments within
that function are aligned. If the function is a dfn, all of the comments within
the same capsule1 are aligned.

l If the cursor is in a line that is not in a function, all of the comments
between the end of the preceding function (or the start of the script) and the
beginning of the next function (or the end of the script) are aligned.

Tracing dfn Arguments
It is now possible to view the value of ⍺, ⍺⍺, ⍵ and ⍵⍵ when tracing a dfn, using the
mouse or using)ED or ⎕ED. If you open an edit window on them it will be read-
only.

Tracing Blank Lines and Comments
It is now possible to separately specify whether or not the Tracer should skip blank
lines and comments.

See User's Guide: Configuration Dialog: Trace/Edit and Installation & Con-
figuration Guide: SkipBlankLines parameter.

1A capsule is defined as the outermost dfn in a set of nested dfns.

Chapter 3: Miscellaneous 38

Workspaces without File Extensions
When locating a workspace where no file name extension has been explicitly
provided, the newWSEXT parameter is used to identify the corresponding file.

This parameter specifies workspace filename extensions. It complements the
WSPATH parameter in that together they determine the file search order to satisfy)
LOAD or)COPY; it also specifies the filename extension to add on)SAVE if none is
explicitly provided.

WSEXT is a string that specifies a colon-separated list of one or more extensions,
including any period (".") which separates the extension from its basename

If undefined, WSEXT defaults to .dws: on Windows and :.dws:.DWS on all
other platforms.

Loading a Workspace
If the workspace name specified for)LOAD,)XLOAD,)COPY,)PCOPY, ⎕LOAD and
⎕CY, and the workspace name given on the Dyalog command line, does not end with
a file extension, the corresponding file is located as follows:

The name is appended with each extension inWSEXT in turn.

l If the resulting name is a full or relative pathname, the system tries to open
the named file in the appropriate directory.

l If the resulting name contains no directory information, the system looks in
each of the directories specified by WSPATH.

This operation is repeated (the outer loop is the extensions specified byWSEXT, the
inner loop is the list of directories specified byWSPATH) until a file matching the
name is found or until the list of extensions is exhausted.

Saving a Workspace
If the workspace name specified for)SAVE or)CONTINUEis elided, the file will be
saved with the name contained in ⎕WSID. If an extension was specified in the name
assigned to ⎕WSID or)WSID, that extension will be used. If not, the corresponding
file name is constructed by adding the first extension inWSEXT.

If the workspace name specified for)SAVE,)CONTINUE or ⎕SAVE does not end
with a file extension, the corresponding file name is constructed by adding the first
extension inWSEXT.

Chapter 3: Miscellaneous 39

Dropping a Workspace
If the workspace name specified for)DROP does not end with a file extension, the
system identifies all the files in the specified directory whose names match the work-
space name for all extensions inWSEXT

If this identifies a single file match, that file is deleted. If it identifies more than one
file match, the list of matching files is displayed but no file is erased.

Example:
)lib .

pete.dws pete1.dws

)CMD copy pete.dws pete
1 file(s) copied.

)lib .
pete. pete.dws pete1.dws

)drop pete
Multiple possibilities:

pete.dws
pete.

Consequential Changes
As a result of the implementation ofWSEXT, certain changes have been made to the
output generated by)WSID and)LIB. No changes have been made to the beha-
viour of ⎕WSID, because this might have affected existing code.

Trailing Dot for Workspace Names Without File Extensions
UnderWindows only, all system commands that report workspace names add a dot
to any workspace name whose file name does not have an extension (see previous
example).

Workspace Identification
)WSID now always reports the file extension whether it was assigned explicitly, or
implicitly by the application ofWSEXT.

Chapter 3: Miscellaneous 40

Improved Thread Support for WPF
When an APL thread first makes a .NET call, it creates a unique system thread in
which that and subsequent .NET calls are made. If a .NET call results in the creation
of a message queue, that queue is associated with that same system thread. So each
message queue is also unique. This strategy successfully maintains separation
between multiple Windows message queues being executed in different APL threads.

By default, the base APL thread (thread 0) runs .NET code in the same system thread
as itself. This is a different system thread to that used to run .NET code from other
APL threads, so the separation between message queues associated with APL thread
0 and those associated with other APL threads is maintained. However, in certain cir-
cumstances, messages generated by .NET objects interfere with APL's internal mes-
sage processing (and vice-versa), for example when handling exceptions.

For this reason, Dyalog recommends that APL code that creates instances of .NET
objects that generate events (such as Windows Presentation Foundation objects) are
run in a separate APL thread.

Where this is not possible, 2520⌶1may be used to force Dyalog to use a unique sys-
tem thread for .NET that is associated with APL thread 0. If so, it is recommended
that 2520⌶1 is called at application start-up time.

For further information, see Use Separate Thread For .NET on page 67.

Chapter 3: Miscellaneous 41

Removal of HelpURL from DMX
HelpURL has been removed from the display form of ⎕DMX, although it remains as a
property.

Version 14.0
1÷0

DOMAIN ERROR: Divide by zero
1÷0

∧
⎕DMX

EM DOMAIN ERROR
Message Divide by zero
HelpURL http://help.dyalog.com/dmx/14.0/General/1

Version 14.1
1÷0

DOMAIN ERROR: Divide by zero
1÷0

∧
⎕DMX

EM DOMAIN ERROR
Message Divide by zero

Chapter 3: Miscellaneous 42

New Parameters
ExternalHelpURL Parameter

The URL for help on external objects is now specified by the ExternalHelpURL con-
figuration parameter and not by the DefaultHelpCollection parameter which has
been removed.

RIDE_INIT
This parameter determines how the interpreter should behave with respect to the
RIDE protocol. Setting this configuration parameter on the machine that hosts the
interpreter enables the interpreter-RIDE connection.

The format of the value is:

<setting> : <address> : <port>

setting is the action the interpreter should take. Valid values are:

l serve – listen for incoming connections
l connect – connect to the specified RIDE and end the session if this fails
l poll – try to connect to the specified RIDE at regular intervals and recon-

nect if the connection is lost

address is the machine on which to listen for a connection (if setting is serve) or con-
nect to (if setting is connect/poll). Valid values are:

l the name of the machine
l the IPv4 address of the machine
l the IPv6 of the machine
l empty – if setting is serve then the interpreter listens to everything on every

network interface, if setting is connect/poll then the interpreter only listens
for local connections (127.0.0.1).

port is the TCP port to listen on

The RIDE_INIT configuration parameter is set automatically when launching a new
Dyalog Session from the RIDE.

Chapter 3: Miscellaneous 43

RIDE_SPAWNED
If non-zero, this parameter disables ⎕SR and)SH which instead generate
DOMAIN ERROR. This parameter is used to prevent certain user-interfaces from
being executed from a RIDE session which does not support them, and which would
otherwise cause the RIDE session to become unresponsive. See RIDE Reference
Guide.

Chapter 3: Miscellaneous 44

Chapter 4: Language Reference Changes 45

Chapter 4:

Language Reference Changes

Disposable Statement :Disposable

The Dyalog interface to .NET involves the creation and removal of .NET objects.
Many such objects are managed in that the .NET Common Language RunTime
(CLR) automatically releases the memory allocated to the object when that object is
no longer used. However, it is not possible to predict when the CLR garbage col-
lection will occur. Furthermore, the garbage collector has no knowledge of
unmanaged resources such as window handles, or open files and streams.

Typically, .NET classes implement a special interface called IDisposable which
provides a standard way for applications to release memory and other resources when
an instance is removed. Furthermore, the C# language has the using keyword,
which "Provides a convenient syntax that ensures the correct use of IDisposable
objects."

The :Disposable array statement in Dyalog APL provides a similar facility to
C#'s using. arraymay be a scalar or vector of namespace references.

When the block is exited, any .Net objects in array that implement
IDisposable will have IDisposable.Dispose called on them.

Chapter 4: Language Reference Changes 46

Note that exit includes normal exit as the code drops through :EndDisposable,
or if an error occurs and is trapped, or if branch (→) is used to exit the block, or any-
thing else.

See also: .NET Interface Guide: .Disposing of .NET Objects.

Example (Normal Exit)
:Disposable f←⎕NEW Font
.
.
:EndDisposable

In the above example, when the :EndDisposable statement is reached, the system
disposes of the Font object f (and all the resources associated with it) by calling
(IDisposable)f.Dispose(). A subsequent reference to f would generate
VALUE ERROR.

Example (Normal Exit)
:Disposable fonts←⎕NEW ¨Font Font
.
.
:EndDisposable

In the above example, Dispose() is called on each of the Font objects in fonts
during the processing of :EndDisposable.

Example (Branch Exit)
:Disposable fonts←⎕NEW ¨Font Font
.
→0
.
:EndDisposable

In this example, Dispose() is called on the Font objects in fonts during the
processing of the branch statement →0.

Chapter 4: Language Reference Changes 47

Example (TrapExit)
:trap 0

:Disposable fonts←⎕NEW ¨Font Font
.
÷0
.
:EndDisposable

:else

⎕←'failed'

:endif

Here, the objects are disposed of when the DOMAIN ERROR generated by the expres-
sion ÷0 causes the stack to be cut back to the :Else clause. At this point (just
before the execution of the :Else clause) the name class of fonts becomes 0.

:Disposable Statement

|
:Disposable array
|
code
|
:End[Disposable]
|

Chapter 4: Language Reference Changes 48

Arbitrary Input R←{X}⎕ARBIN Y

This transmits a stream of 8-bit codes in Y to an output device specified by X prior to
reading from an input device specified by X.

Ymay be a scalar or a simple vector of integer numbers in the range 0-255.

Xmay take several forms:

terminate (input output) ⎕ARBIN codes
terminate input ⎕ARBIN codes

terminate
This is a simple numeric scalar that specifies how the read operation should be ter-
minated.

l If it is a numeric scalar, it defines the number of bytes to be read.
l If it is a numeric vector, it defines a set of terminating bytes.
l If it is the null vector, the read terminates on Newline (10).

input
This is a simple numeric scalar that specifies the input device.

l If it is positive or zero, it represents a file descriptor that must have been
associated by the command that started Dyalog APL.

l If it is negative, it represents the tie number of a file opened by ⎕NTIE or
⎕NCREATE.

output
If specified, this is a simple numeric integer that identifies the output device.

l If it is positive or zero, it represents a file descriptor that must have been
associated by the command that started Dyalog APL.

l If it is negative, it represents the tie number of a file opened by ⎕NTIE or
⎕NCREATE.

The result R is a simple numeric vector. Each item of R is the numeric representation
of an 8-bit code in the range 0 to 255 received from the input device. The meaning
of the code is dependent on the characteristics of the input device. If a set of delim-
iters was defined by terminate, the last code returned will belong to that set.

Chapter 4: Language Reference Changes 49

⎕RTL (Response Time Limit) is an implicit argument of ⎕ARBIN. This allows a time
limit to be imposed on input. If the time limit is reached, ⎕ARBIN returns with the
codes read up to that point. This does not apply underWindows.

The operation will fail with a DOMAIN ERROR if Y contains anything other than
numbers in the range 0-255, or if the current process does not have permission to read
from or write to the specified device(s).

Examples (UNIX)
)sh mkfifo ./fifo

in←'./fifo'⎕NTIE 0
out←'./fifo'⎕NTIE 0

(10 (in out))⎕ARBIN ⎕UCS ⎕D
48 49 50 51 52 53 54 55 56 57

(⍬ (in out))⎕ARBIN 10
10

⍝ cope with parity on line ending 10
((10+0 128) (in out))⎕ARBIN 10

10

Chapter 4: Language Reference Changes 50

Arbitrary Output {X}⎕ARBOUT Y

This transmits a stream of 8-bit codes in Y to an output device specified by X.

Ymay be a scalar or a simple vector of integer numbers in the range 0-255.

X is a simple numeric integer that specifies the output device.

l If X is positive or zero, it represents a file descriptor that must have been
associated by the command that started Dyalog APL.

l If X is negative, it represents the tie number of a file opened by ⎕NTIE or
⎕NCREATE.

If Y is an empty vector, no codes are sent to the output device.

The operation will fail with a DOMAIN ERROR if Y contains anything other than
numbers in the range 0-255, or if the current process does not have permission to
write to the specified device.

Examples
Write ASCII digits '123' to stream 9:

9 ⎕ARBOUT 49 50 51

Write ASCII characters 'ABC' to MYFILE:

'MYFILE' ⎕NCREATE ¯1
¯1 ⎕ARBOUT 65 66 67

Append the string 'Κάλο Πάσχα' to the same file, and close it:

¯1 ⎕ARBOUT 'UTF-8' ⎕UCS'Κάλο Πάσχα'
⎕NUNTIE ¯1

Chapter 4: Language Reference Changes 51

Edit Object {R}←{X}⎕ED Y

⎕ED invokes the Editor. Y is a simple character vector, a simple character matrix, or a
vector of character vectors, containing the name(s) of objects to be edited. The
optional left argument X is a character scalar or character vector with as many ele-
ments as there are names in Y. Each element of X specifies the type of the cor-
responding (new) object named in Y, where:

∇ function/operator

→ simple character vector

∊ vector of character vectors

- character matrix

⍟ Namespace script

○ Class script

∘ Interface

If an object named in Y already exists, the corresponding type specification in X is
ignored.

If ⎕ED is called from the Session, it opens Edit windows for the object(s) named in Y
and returns a null result. The cursor is positioned in the first of the Edit windows
opened by ⎕ED, but may be moved to the Session or to any other window which is
currently open. The effect is almost identical to using)ED.

If ⎕ED is called from a defined function or operator, its behaviour is different. On
asynchronous terminals, the Edit windows are automatically displayed in "full-
screen" mode (ZOOMED). In all implementations, the user is restricted to those win-
dows named in Y. The user may not skip to the Session even though the Session may
be visible.

⎕ED terminates and returns a result ONLY when the user explicitly closes all the win-
dows for the named objects. In this case the result contains the names of any objects
which have been newly (re)fixed in the workspace as a result of the ⎕ED, and has the
same structure as Y.

Objects named in Y that cannot be edited are silently ignored. Objects qualified with
a namespace path are (e.g. a.b.c.foo) are silently ignored if the namespace does
not exist.

Chapter 4: Language Reference Changes 52

Variants of Edit Object
The behaviour of ⎕EDmay be modified using the variant operator ⍠ with the fol-
lowing options:

l 'ReadOnly' - 0 or 1
l 'EditName' - 'Default', 'Allow' or 'Disallow'.

If ReadOnly is set to 1, the edit window and all edit windows opened from it will
be read-only. Note that setting ReadOnly to 0 will have no effect if the edit win-
dow is inherently read-only due to the nature of its content.

The 'EditName' option determines whether or not the user may open another edit
window by clicking a name, and its values are interpreted as follows:

EditName ⎕ED called from session ⎕ED called from function

'Default' Allow Disallow

'Allow' Allow Allow

'Disallow' Disallow Disallow

There is no Principal Option.

Examples
A←3 11⍴'Hello World'

In the first example, ⎕ED will display the contents of A as an editable character array
which the user may change. The user can double-click on Hello to open an edit win-
dow on an object named Hello (which will be a new function if Hello is currently
undefined). Furthermore, the user can enter any arbitrary name and double-click to
edit it. This may be undesirable in an application.

⎕ED 'A'

In the second example, the Edit window will display the contents of A as a Readonly
Character array. The user can still open a new edit by double-clicking Hello orWorld
but nothing else.

(⎕ED ⍠ 'ReadOnly' 1) 'A'

In the final example, the Edit window will display the contents of A as a Readonly
Character array and the user cannot open a new edit window.

(⎕ED ⍠('ReadOnly' 1)('EditName' 'Disallow'))'A'

Chapter 4: Language Reference Changes 53

File Create {R}←X ⎕FCREATE Y

Ymust be a simple integer scalar or a 1 or 2 element vector. The first element is the
file tie number. The second element, if specified, must be 641.

The file tie numbermust not be the tie number associated with another tied file.

Xmust be either

a. a simple character scalar or vector which specifies the name of the file to be
created. See User Guide for file naming conventions under UNIX and Win-
dows.

b. a vector of length 1 or 2 whose items are:

i. a simple character scalar or vector as above.
ii. an integer scalar specifying the file size limit in bytes.

The newly created file is tied for exclusive use.

The shy result of ⎕FCREATE is the tie number of the new file.

Automatic Tie Number Allocation
A tie number of 0 as argument to a create or tie operation, allocates, and returns as an
explicit result, the first (closest to zero) available tie number. This allows you to sim-
plify code. For example:

from:

tie←1+⌈/0,⎕FNUMS ⍝ With next available number,
file ⎕FCREATE tie ⍝ ... create file.

to:

tie←file ⎕FCREATE 0 ⍝ Create with first available..

Examples
'..\BUDGET\SALES' ⎕FCREATE 2 ⍝ Windows
'../budget/SALES.85' ⎕FCREATE 2 ⍝ UNIX

'COSTS' 200000 ⎕FCREATE 4 ⍝ max size 20000
0

1This element sets the span of the file which in earlier Versions of Dyalog APL could be 32 or 64.
Small-span (32-bit) component files may no longer be created and this element is retained only for
backwards compatibility of code.

Chapter 4: Language Reference Changes 54

File Properties
⎕FCREATE allows you to specify properties for the newly created file via the variant
operator ⍠ used with the following options:

l 'J' - journaling level; a numeric value.
l 'C' - checksum level; 0 or 1.
l 'Z' - compression; 0 or 1.
l 'U' - Unicode; 0 or 1
l 'S' - File Size (span); 64

The Principal Option is as follows:

l 0 - sets ('J' 0) ('C' 0)
l 1 - sets ('J' 1) ('C' 1)
l 2 - sets ('J' 2) ('C' 1)
l 3 - sets ('J' 3) ('C' 1)

Examples
'newfile' (⎕FCREATE⍠3) 0

1
'SEUJCZ' ⎕FPROPS 1

64 0 1 3 1 0

Alternatively:

JFCREATE←⎕FCREATE ⍠ 3

will name a variant of ⎕FCREATE which will create component file with level 3
journaling, and checksum enabled. Then:

'newfile'JFCREATE 0
1

Chapter 4: Language Reference Changes 55

File Copy R←X ⎕FCOPY Y

Access Code: 4609
Ymust be a simple integer scalar or 1 or 2-element vector containing the file tie num-
ber and optional passnumber. The file need not be tied exclusively.

X is a character vector containing the name of a new file to be copied to.

⎕FCOPY creates a copy of the tied file specified by Y, named X.

The new file X will have the same component level information, including the user
number and update time as the original. The operating system file creation, modi-
fication and access times will be set to the time at which the copy occurred.

Unless otherwise specified (see File Properties below) the new file X will have the
same file properties as the original, except that it will be a large-span file regardless
of the span of the original.

The result R is the file tie number associated with the new file X.

Note that the Access Code is 4609, which is the sum of the Access Codes for
⎕FREAD (1), ⎕FRDCI (512) and ⎕FRDAC (4096).

Note also that although the file need not be tied exclusively, the ⎕FCOPY function
will not yield the file to other APL processes while it is running, and it may take
some considerable time to run in the case of a large component file.

Example
told←'oldfile32'⎕FTIE 0
'S' ⎕FPROPS told

32
tnew←'newfile64' ⎕FCOPY told

'S' ⎕FPROPS tnew
64

If X specifies the name of an existing file, the operation fails with a FILE NAME
ERROR.

Note: This operation is atomic. If an error occurs during the copy operation (such as
disk full) or if a strong interrupt is issued, the copy will be aborted and the new file X
will not be created.

Chapter 4: Language Reference Changes 56

File Properties
⎕FCOPY now allows you to specify properties for the new file via the variant oper-
ator ⍠ used with the following options:

l 'J' - journaling level; a numeric value.
l 'C' - checksum level; 0 or 1.
l 'Z' - compression; 0 or 1.
l 'U' - Unicode; 0 or 1
l 'S' - File Size (span); 64

The Principal Option is as follows:

l 0 - sets ('J' 0) ('C' 0)
l 1 - sets ('J' 1) ('C' 1)
l 2 - sets ('J' 2) ('C' 1)
l 3 - sets ('J' 3) ('C' 1)

Examples
newfid←'newfile' (⎕FCOPY ⍠3) 1

'SEUJCZ' ⎕FPROPS newfid
64 0 1 3 1 0

Alternatively:

JFCOPY←⎕FCOPY ⍠ 3

will name a variant of ⎕FCREATE which will create component file with level 3
journaling, and checksum enabled. Then:

newfid←'newfile' JFCOPY 1

Note: Setting ('U' 0) (no Unicode support) is discouraged as it may cause the
copy to fail with a TRANSLATION ERROR.

Chapter 5: I-Beam Reference Changes 57

Chapter 5:

I-Beam Reference Changes

I-Beam Changes
In the following tables, A is an integer that specifies the type of operation to be per-
formed.

I-Beam functionality added to Version 14.1.

A Derived Function

85 Execute Expression

127 Overwrite Free Pockets

900 Called Monadically

950 Loaded Libraries

2017 Identify .NET Type

2035 Set Dyalog Pixel Type

2101 Close .NET AppDomain

2503 Mark Thread as Uninterruptible

2520 Spawn .NET Thread

3500 Send Text to RIDE-embedded Browser

3501 Connected to the RIDE

3502 Enable RIDE in Run-time Interpreter

7159 JSON Import

7160 JSON Export

7161 JSON TrueFalse

7162 JSON Translate Name

50100 Line Count

Chapter 5: I-Beam Reference Changes 58

Experimental Features-related I-Beams
Dyalog APL includes a number of I-Beams which exist in order to support exper-
imental features, and features which are associated with the interpreter.

The following table lists those I-Beams, together with the document which contains
a description of them:

Table 1: Experimental and other I-Beams
A Purpose Where documented

400 Compiler Dyalog APL Experimental Features - Compiler

8659
External
Workspaces

Dyalog APL Experimental Features - External
Workspaces8666

8667

Chapter 5: I-Beam Reference Changes 59

Execute Expression R←X(85⌶)Y

Executes an expression.

Y is a character vector containing an APL expression.

The function executes the expression in Y exactly as it would be executed by the
monadic Execute primitive function ⍎, but handles shy results of the execution rather
differently.

The left argument X determines how a shy result from the execution of Y is treated
and is either 0 or 1.

If X is 1, and the expression in Y returns an explicit result, R is that result. If the expres-
sion in Y returns no result or returns a shy result, the function signals ERROR 85.
Effectively, a shy result is discarded.

If X is 0, and the expression in Y returns an explicit result or a shy result, R is that res-
ult (but is no longer shy). If the expression in Y returns no result, the function signals
ERROR 85.

Examples
⍎'a←42'
⎕← ⍎'a←42' ⍝ shy result

42
0 (85⌶) 'a←42' ⍝ not shy

42
1 (85⌶) 'a←42'

ERROR 85
1(85⌶)'a←42'

∧

Chapter 5: I-Beam Reference Changes 60

Overwrite Free Pockets R←127⌶Y

Overwrites all free pockets in the workspace.

Some applications (cryptography for example) make use of secure data during exe-
cution. The nature of the APL workspace is such that remnants of this secure data
may persist in the workspace (and thus the process memory) even after the relevant
APL variables have been expunged. This function overwrites all unused data pockets
in the workspace so that any potentially secure data is removed.

Y is any empty array, preferably zilde ⍬, R is always 1.

It is the responsibility of the programmer to ensure that there are no USED pockets in
the workspace that reference the data.

Example
∇ foo;a

[1] a←'my secure data'
[2] ⎕EX'a'
[3] ⍝ 'my secure data' is now in an
[4] ⍝ UNUSED pocket in the workspace
[5] a←127⌶0 ⍝ all unused pockets are overwritten,
[6] ⍝ 'my secure data' is no longer present

∇

Whereas
∇ foo;a;b

[1] a←'my secure data'
[2] b←a
[3] ⎕EX'a'
[4] ⍝ 'my secure data' is now in an
[5] ⍝ UNUSED pocket in the workspace
[6] a←127⌶0 ⍝ all unused pockets are overwritten,
[7] ⍝ but 'my secure data' is still present
[8] ⍝ because it is referenced by b

∇

Chapter 5: I-Beam Reference Changes 61

Called Monadically R←900⌶Y

Identifies how the current function was called. 900⌶ applies only when called from
within a variadic defined function (not a dfn).

Ymay be any array.

The result R is boolean. 1 means that the current function was called monadically; 0
means that it wasn't. If there is no function on the stack, the result is 0.

Example
∇ r←{left}foo right

[1] r←900⌶⍬
∇
foo 10

1
0 foo 10

0

Chapter 5: I-Beam Reference Changes 62

Loaded Libraries R←950⌶Y

Reports the names of the dynamic link libraries that are currently loaded as a result of
executing ⎕NA.

Y is an empty vector.

The result R is a vector of character vectors containing the names of all the DLLs or
shared libraries that have been explicitly loaded by ⎕NA and are still loaded by virtue
of the presence of at least one external function reference.

Examples
)clear

clear ws
'Aloc'⎕NA'P kernel32∣GlobalAlloc U4 P'
'Free'⎕NA'P kernel32∣GlobalFree P'
'Lock'⎕NA'P kernel32∣GlobalLock P'
'Ulok'⎕NA'U4 kernel32∣GlobalUnlock P'
'Valu'⎕NA'U4 version∣VerQueryValue* P <0T >U4 >U4'
'copy'⎕NA'P msvcrt∣memcpy >U4[] P U4'

950⌶⍬
KERNEL32.DLL VERSION.DLL MSVCRT.DLL

)fns
Aloc Free Lock Ulok Valu copy

)erase Aloc Free Lock Valu
950⌶⍬

KERNEL32.DLL MSVCRT.DLL
)fns

Ulok copy

)erase Ulok
950⌶⍬

MSVCRT.DLL

)clear
clear ws

950⌶⍬

Chapter 5: I-Beam Reference Changes 63

Identify NET Type R←2017⌶Y

Windows only.

Returns the .NET Type of a named .NET class that is loaded in the current AppDo-
main. Note that System.Type.GetType requires the fully qualified name, i.e. pre-
fixed by the assembly name, whereas (2017⌶) does not.

Y is a character string containing the name of a .NET object. Unless the fully qual-
ified name is given, the namespaces in the current AppDomain are searched in the
order they are specified by ⎕USING or :Using.

If the object is identified in the current AppDomain, the result R is its Type. If not,
the function generates DOMAIN ERROR.

Example
⎕USING←'System'
2017⌶'DateTime'

System.DateTime

Chapter 5: I-Beam Reference Changes 64

Set Dyalog Pixel Type R←2035⌶Y

Determines how Coord 'Pixel' is interpreted. This is determined initially by the
value of the DYALOG_PIXEL_TYPE parameter and, when altered by this function,
applies to all subsequent GUI operations.

Yis a character vector that is either 'ScaledPixel' or 'RealPixel'. Any other
value will cause a DOMAIN ERROR.

The result R is the previous value.

Example
2035⌶'ScaledPixel'

RealPixel
2035⌶'RealPixel'

ScaledPixel

2035⌶'realpixel'
DOMAIN ERROR

2035⌶'realpixel'
∧

Chapter 5: I-Beam Reference Changes 65

Close .NET AppDomain R←2101⌶Y

Windows only.

This function closes the current .NET AppDomain.

Ymay be any array and is ignored.

The result R is 0 if the operation succeeded or a non-zero integer if it failed.

This I-Beam is very likely to be changed in future.

Chapter 5: I-Beam Reference Changes 66

Mark Thread as Uninterruptible R←2503⌶Y

This function marks the current thread (the thread in which it is called) as unin-
terruptible, and/or determines whether or not any child threads, subsequently created
by the current thread, will be uninterruptible.

The right argument Y is an integer whose value is the sum of the following (bit-wise)
values:

l 1 : mark thread as uninterruptible
l 2 : mark its children as uninterruptible

The result R is an integer value that indicates the previous state of the thread.

In many multi-threaded applications a large proportion of the threads are used for
communication mechanisms (⎕DQ on TCPsockets, Conga, isolates); but most of the
"real work" is done in thread zero.

It is undesirable that a weak interrupt interrupts a seemingly random thread. The
mechanism to prevent a thread from being (weak) interrupted allows an application
to be configured so that only specific threads would respond to a weak interrupt.

Chapter 5: I-Beam Reference Changes 67

Use Separate Thread For .NET R←2520⌶Y

This function determines the way that .NET calls are executed in APL thread 0.

The right argument Y is a boolean value:

l 1 : run .NET calls in a separate system thread
l 0 : run .NET calls in the same system thread

The result R is a boolean value which indicates the previous behaviour.

When an APL thread first makes a .NET call, it creates a unique system thread in
which that and subsequent .NET calls are made. If a .NET call results in the creation
of a message queue, that queue is associated with that same system thread. So each
message queue is also unique. This strategy successfully maintains separation
between multiple Windows message queues being executed in different APL threads.

By default, the base APL thread (thread 0) runs .NET code in the same system thread
as itself. This is a different system thread to that used to run .NET code from other
APL threads, so the separation between message queues associated with APL thread
0 and those associated with other APL threads is maintained. However, in certain cir-
cumstances, messages generated by .NET objects interfere with APL's internal mes-
sage processing (and vice-versa), for example when handling exceptions.

For this reason, Dyalog recommends that APL code that creates instances of .NET
objects that generate events (such as Windows Presentation Foundation objects) are
run in a separate APL thread.

Where this is not possible, 2520⌶1may be used to force Dyalog to use a unique sys-
tem thread for .NET that is associated with APL thread 0. If so, it is recommended
that 2520⌶1 is called at application start-up time.

Chapter 5: I-Beam Reference Changes 68

Send Text to RIDE-embedded Browser R←{X}(3500⌶)Y

Optionally, X is a simple character vector or scalar, the contents of which are used as
the caption for the tab in the RIDE client that contains the embedded browser. If omit-
ted, then the caption defaults to "3500⌶".

Y is a simple character vector the contents of which are displayed in the embedded
browser tab.

To include SVG content, the HTML text in Ymust include the following:

<meta http-equiv="X-UA-Compatible" content="IE=9" >.

The result R identifies whether the write to the RIDE was successful. Possible values
are:

l 0 : the write to the RIDE client was successful
l ¯1 : the write to the RIDE client was not successful

Connected to the RIDE R←{X}(3501⌶)Y

X and Y can be any value and are ignored.

The result R identifies whether the Dyalog Session is running through the RIDE. Poss-
ible values are:

l 0 : the write to the RIDE client was successful
l ¯1 : the write to the RIDE client was not successful

Chapter 5: I-Beam Reference Changes 69

Enable RIDE in Run-time Interpreter 3502⌶⍬

By default, the RIDE is not enabled on run-time executables.

For security reasons, enabling the RIDE is a two-step process rather than using (for
example) a single environment variable. To enable the RIDE, two steps must be
taken:

1. Set the RIDE_INIT configuration parameter on the machine on which the
run-time interpreter is running to an appropriate value.

2. Execute 3502⌶⍬ in your application code

The run-time interpreter can then attempt to connect to a RIDE client.

Note:
Enabling the RIDE to access applications that use the run-time interpreter means that
the APL code of those applications can be accessed. The I-Beammechanism
described above means that the APL code itself must grant the right for a RIDE client
to connect to the run-time interpreter. Although Dyalog Ltd might change the details
of this mechanism, the APL code will always need to grant connection rights. In par-
ticular, no mechanism that is only dependent on configuration parameters will be
implemented.

Chapter 5: I-Beam Reference Changes 70

JSON Import R←X(7159⌶)Y

Imports text in JavaScript Object Notation (JSON) Data Interchange Format1.

Y is a character vector or matrix in JSON format. There is an implied newline char-
acter between each row of a matrix.

The optional left argument X specifies the conversion format and is a scalar or a vec-
tor singleton 0, 1 or 2 as follows. If not specified, the default value is 0.

Import as Object (X is 0)
l JSON objects are created as APL namespaces.
l JSON null is converted to ⎕NULL.
l JSON true is converted to the enclosed character vector ⊂'true'
l JSON false is converted to the enclosed character vector ⊂'false'. The

values for true and false can be obtained using 7161⌶.
l If the JSON source contains object names which are not valid APL names

they are converted to APL objects with mangled names. See JSON Name
Mangling on page 80 . 7162⌶ can be used to obtain the original name.

Note: It is highly likely that the JSON-related I-beams will be superseded by a JSON
system function in a future release of Dyalog APL. It is strongly recommended that
you place all code that references the JSON I-beams in cover functions.

1IETF RFC 7159

Chapter 5: I-Beam Reference Changes 71

Example
⍴JSON

18 19
JSON

{
"a": {

"b": [
"string 1",
"string 2"

],
"c": true,
"d": {

"e": false,
"f⍺": [

"string 3",
123,
1000.2,
null

]
}

}
}

j←0 (7159⌶) JSON ⍝ Import JSON as namespace
j.⎕NL 9

a
j.a.⎕NL 2

b
c

j.a.b
┌────────┬────────┐
│string 1│string 2│
└────────┴────────┘

j.a.c
┌────┐
│true│
└────┘

j.a.⎕NL 9
d

j.a.d.⎕NL 2 ⍝ Note that f⍺ is an invalid APL name
e
⍙_102_9082

j.a.d.e
┌─────┐
│false│
└─────┘

j.a.d.⍙_102_9082
┌────────┬───┬──────┬──────┐
│string 3│123│1000.2│[Null]│
└────────┴───┴──────┴──────┘

Chapter 5: I-Beam Reference Changes 72

Import as a 4-col matrix (X is 1)
The columns contain the following:

[;1] depth

[;2] name (for JSON object members)

[;3] value

[;4] JSON type (integer: see below)

l The representation of null, true and false are the same as for conversion
format 0.

l Object names are reported as specified in the JSON text; they are not
mangled as they are for conversion format 0.

JSON types are as follows:

Type Description

1 Object

2 Array

3 Numeric

4 String

5 Null

6 Boolean (true / false)

Table 2: JSON data types

Chapter 5: I-Beam Reference Changes 73

Example (JSON is as before)
1 (7159⌶) JSON

┌─┬──┬────────┬─┐
│0│ │ │1│
├─┼──┼────────┼─┤
│1│a │ │1│
├─┼──┼────────┼─┤
│2│b │ │2│
├─┼──┼────────┼─┤
│3│ │string 1│4│
├─┼──┼────────┼─┤
│3│ │string 2│4│
├─┼──┼────────┼─┤
│2│c │┌────┐ │6│
│ │ ││true│ │ │
│ │ │└────┘ │ │
├─┼──┼────────┼─┤
│2│d │ │1│
├─┼──┼────────┼─┤
│3│e │┌─────┐ │6│
│ │ ││false│ │ │
│ │ │└─────┘ │ │
├─┼──┼────────┼─┤
│3│f⍺│ │2│
├─┼──┼────────┼─┤
│4│ │string 3│4│
├─┼──┼────────┼─┤
│4│ │123 │3│
├─┼──┼────────┼─┤
│4│ │1000.2 │3│
├─┼──┼────────┼─┤
│4│ │[Null] │5│
└─┴──┴────────┴─┘

Import as a 3-col matrix (X is 2)
The columns contain the following:

[;1] name (for JSON object members)

[;2] value

[;3] JSON type (integer: see above)

Chapter 5: I-Beam Reference Changes 74

Example:
2 (7159⌶) JSON

┌┬────────────────────────────────┬─┐
││┌─┬──────────────────────────┬─┐│1│
│││a│┌─┬────────────────────┬─┐│1││ │
│││ ││b│┌┬────────┬─┐ │2││ ││ │
│││ ││ │││string 1│4│ │ ││ ││ │
│││ ││ │├┼────────┼─┤ │ ││ ││ │
│││ ││ │││string 2│4│ │ ││ ││ │
│││ ││ │└┴────────┴─┘ │ ││ ││ │
│││ │├─┼────────────────────┼─┤│ ││ │
│││ ││c│┌────┐ │6││ ││ │
│││ ││ ││true│ │ ││ ││ │
│││ ││ │└────┘ │ ││ ││ │
│││ │├─┼────────────────────┼─┤│ ││ │
│││ ││d│┌──┬─────────────┬─┐│1││ ││ │
│││ ││ ││e │┌─────┐ │6││ ││ ││ │
│││ ││ ││ ││false│ │ ││ ││ ││ │
│││ ││ ││ │└─────┘ │ ││ ││ ││ │
│││ ││ │├──┼─────────────┼─┤│ ││ ││ │
│││ ││ ││f⍺│┌┬────────┬─┐│2││ ││ ││ │
│││ ││ ││ │││string 3│4││ ││ ││ ││ │
│││ ││ ││ │├┼────────┼─┤│ ││ ││ ││ │
│││ ││ ││ │││123 │3││ ││ ││ ││ │
│││ ││ ││ │├┼────────┼─┤│ ││ ││ ││ │
│││ ││ ││ │││1000.2 │3││ ││ ││ ││ │
│││ ││ ││ │├┼────────┼─┤│ ││ ││ ││ │
│││ ││ ││ │││[Null] │5││ ││ ││ ││ │
│││ ││ ││ │└┴────────┴─┘│ ││ ││ ││ │
│││ ││ │└──┴─────────────┴─┘│ ││ ││ │
│││ │└─┴────────────────────┴─┘│ ││ │
││└─┴──────────────────────────┴─┘│ │
└┴────────────────────────────────┴─┘

Duplicate Names
The JSON standard says that members of a JSON object should have unique names
and that different implementations behave differently when there are duplicates.
Dyalog handles duplicate names as follows:

l No error is generated
l For format 0, the last member encountered is used and all previous members

with the same name are discarded
l For other formats all duplicate members are recorded in the result matrix

Chapter 5: I-Beam Reference Changes 75

The JavaScript Object Notation
IETF RFC 7159 - The JavaScript Object Notation (JSON) Data Interchange Format -
is a widely supported, text based data interchange format for the portable rep-
resentation of structured data; any application which conforms to the standard may
exchange data with any other. Note, however, that the standard describes a limited
set of data types and JSON does not provide a general APL import/export mech-
anism. In particular:

Not all APL arrays are representable in JSON.
For example, arrays with more than one dimension cannot be represented in JSON.
Of course, this does mean that applications using JSON are unlikely to use such
objects; you probably will need rearrange your data into the format that is expected
by the receiving application. In the case of a 2-dimensional matrix, a split will give
you a vector of tuples that a JSON application is likely to expect:

(7160⌶) 3 4⍴⍳12
DOMAIN ERROR: Array unsupported by JSON

(7160⌶) 3 4⍴⍳12
∧
(7160⌶) ↓3 4⍴⍳12

[[1,2,3,4],[5,6,7,8],[9,10,11,12]]

Not all APL object names are representable in JSON.
Objects with names which cannot be represented in JSON are renamed on both
import and export as described in JSON Name Mangling on page XX.

JSON true and false
The JSON standard includes Boolean values true and false which are distinct from
numeric values 1 and 0, and have no direct APL equivalent.

To represent JSON true and false types this implementation adopts the convention of
using APL arrays ⊂'true' and ⊂'false' respectively. These arrays cannot oth-
erwise be represented in JSON and allow true and false to be uniquely identified. See
also: JSON TrueFalse on page 78.

Chapter 5: I-Beam Reference Changes 76

JSON Export R←X(7160⌶)Y

Exports text in JavaScript Object Notation (JSON) Data Interchange Format1.

Yis the data to be exported as JSON, in one of the formats imported by 7159⌶.

If X is specified it must be a scalar or a vector containing at most 3 elements as fol-
lows:

1. Conversion format - an integer between 0 and 2 inclusive; defaults to 0 if
omitted

2. Generate compact JSON if 0; generate formatted JSON if non-zero; defaults
to 0 if omitted

3. Tolerate data which cannot be exported as JSON if zero (only valid if con-
version format is 0); error if data cannot be exported if non-zero; defaults to
1 if omitted.

The result R is a character vector.

If invalid JSON data is tolerated it is represented in R as an asterisk. This allows
invalid data to be located within the array.

The name of any namespace member that begins with ⍙ and otherwise conforms to
the conversion format used for JSON object names will be included.

Note: It is highly likely that the JSON-related I-beams will be superseded by a JSON
system function in a future release of Dyalog APL. It is strongly recommended that
you place all code that references the JSON I-beams in cover functions.

1IETF RFC 7159

Chapter 5: I-Beam Reference Changes 77

Example
j

#.[JSON object]

⍴JS←0(7160⌶)j
94

JS
{"a":{"b":["string 1","string 2"],"c":true,"d":{"e":false
,"f⍺":["string 3",123,1000.2,null]}}}

0 1(7160⌶)j
{

"a": {
"b": [

"string 1",
"string 2"

],
"c": true,
"d": {

"e": false,
"f⍺": [

"string 3",
123,
1000.2,
null

]
}

}
}

Note:
If an error is detected in the matrix input in conversion formats 1 and 2 the error
description identifies the relevant row number. This is ⎕IO sensitive. Conversion
format 2 allows nesting of matrices within matrices and the row may be identified by
multiple comma separated numbers: the first number is the row number of the out-
ermost matrix, the second is the row number of the next level matrix, and so on. If the
matrices are nested very deeply this will be truncated to the innermost matrix row
number and depth.

See also: The JavaScript Object Notation on page 75.

Chapter 5: I-Beam Reference Changes 78

JSON TrueFalse R←7161⌶Y

This function returns the value of the APL array to which the JSON values of true
and false are converted by JSON Import (7159⌶). It is also the value fromwhich
the JSON values of true and false are converted by JSON Export (7160⌶).

Y is a scalar or 1-element vector with the value 0 or 1.

If Y is 1, R is the APL equivalent of JSON true. If Y is 0, R is the APL equivalent of
JSON false.

This function is provided to permit the programmer to avoid hard-coding the current
values used to represent JSON true and false, as these may change in the future. It is
also slightly faster to use this function for comparison than to hard-code the values.

See also: The JavaScript Object Notation on page 75.

Note: It is highly likely that the JSON-related I-beams will be superseded by a JSON
system function in a future release of Dyalog APL. It is strongly recommended that
you place all code that references the JSON I-beams in cover functions.

Examples
7161⌶1

true

7161⌶0
false

Chapter 5: I-Beam Reference Changes 79

JSON Translate Name R←X(7162⌶)Y

Converts between JSON names and APL names.

When 0(7159⌶) imports an entity from JSON text whose name would be an
invalid APL name, the function converts the invalid name into a valid APL name
using a name mangling algorithm. For details, see JSON Name Mangling on page
80. When 0(7160⌶) exports an APL namespace as JSON text, the process is
reversed.

This function performs the same name mangling allowing the programmer to identify
JSON entities as APL names, and vice-versa.

Y is a character vector or scalar.

X is a scalar numeric value which must be 1 or 0.

When X is 0, R is the name in Y converted, if necessary, so that it is a valid APL
name. It performs the same translation of JSON object names to APL names that is per-
formed when importing JSON.

When X is 1, R is the name in Y which, if mangled, is converted back to the original
form.. It performs the same translation of APL names to JSON object names that is per-
formed when exporting JSON.

Note: It is highly likely that the JSON-related I-beams will be superseded by a JSON
system function in a future release of Dyalog APL. It is strongly recommended that
you place all code that references the JSON I-beams in cover functions.

Examples:
0(7162⌶)'2a'

⍙_50_97

1(7162⌶)'⍙_50_97'
2a

0(7162⌶)'foo'
foo

1(7162⌶)'foo'
foo

1(7162⌶)'⍙_97_'
⍙_97_

Note that the algorithm can be applied, even when mangling is not required. So:

1(7162⌶)'⍙_97'
a

For further details, see JSON Name Mangling on page 80.

Chapter 5: I-Beam Reference Changes 80

JSON Name Mangling
When Dyalog converts from JSON to APL data, and a member of a JSON object has
a name which is not a valid APL name, it is renamed.

Example:
In this example, the JSON describes an object containing two numeric items, one
named a (which is a valid APL name) and the other named 2a (which is not):

{"a": 1, "2a": 2}

When this JSON is imported as an APL namespace using 0(7159⌶), Dyalog con-
verts the name 2a to a valid APL name. The name mangling algorithm creates a name
beginning with ⍙, followed by the ⎕UCS of each of the characters in the JSON name
preceded by an underscore (_).

(0(7159⌶)'{"a": 1, "2a": 2}').⎕NL 2
a
⍙_50_97

When Dyalog exports JSON it performs the reverse name mangling, so:

0 1(7160⌶)0(7159⌶)'{"a": 1, "2a": 2}'
{

"a": 1,
"2a": 2

}

Should you need to create and decode these names directly,7162⌶ provides the same
name mangling and un-mangling operations.

0(7162⌶)'2a'
⍙_50_97

1(7162⌶)'⍙_50_97'
2a

Chapter 5: I-Beam Reference Changes 81

Line Count R←50100⌶Y

This function is a compact version of the system function ⎕LC. If an expression
requires only the most recent line(s) in the function calling stack, this is a more effi-
cient alternative to using ⎕LC.

Ymay be an integer specifying the depth of the function calling stack that is required
in the result.

The result R is the same as ⎕LC, but truncated to the number of stack levels specified
by Y.

Example
∇ Foo

[1] :If 4=⍴⎕LC
[2] 50100⌶0
[3] 50100⌶1
[4] 50100⌶2
[5] 50100⌶3
[6] 50100⌶4
[7] 50100⌶5
[8] →
[9] :Else
[10] Foo
[11] :EndIf

∇

Foo

3
4 10
5 10 10
6 10 10 10
7 10 10 10

Chapter 5: I-Beam Reference Changes 82

Chapter 6: Object Reference Changes 83

Chapter 6:

Object Reference Changes

Coord Property

Applies To: ActiveXControl, Animation, Bitmap, Button, ButtonEdit, Calendar,
Circle, ColorButton, Combo, ComboEx, DateTimePicker, Edit,
Ellipse, Font, Form, Grid, Group, Image, Label, List, ListView,
Locator, Marker, MDIClient, Menu, Metafile, Poly, Printer,
ProgressBar, PropertyPage, PropertySheet, Rect, RichEdit, Root,
Scroll, SM, Spinner, Splitter, Static, StatusBar, StatusField,
SubForm, TabBar, Text, ToolBar, TrackBar, TreeView, UpDown

Description

This property defines an object's co-ordinate system. It is a character string with one
of the following values; 'Inherit', 'Prop', 'Pixel', 'RealPixel',
'ScaledPixel', 'User' or 'Cell' (graphics children of a Grid only).

If Coord is 'Inherit', the co-ordinate system for the object is inherited from its
parent. Note that the default value of Coord for the system object '.' is 'Prop', so
by default all objects created by ⎕WC inherit 'Prop'.

If Coord is 'Prop', the origin of the object's parent is deemed to be at its top left
interior corner, and the scale along its x- and y-axes is 100. The object's position and
size (Posn and Size properties) are therefore specified and reported as a percentage of
the dimensions of the parent object, or, for a Form, of the screen.

Chapter 6: Object Reference Changes 84

If Coord is 'RealPixel', the origin of the object's parent is deemed to be at its top
left interior corner, and the scale along its x- and y-axes is measured in physical pixel
units. The object's position and size (Posn and Size properties) are therefore reported
and set in physical pixel units. If you set Coord on the system object to 'Pixel',
the value of its Size property gives you the resolution of your screen. Note that pixels
are numbered from 0 to (Size -1).

If Coord is 'ScaledPixel' the number of pixels specified for Posn, Size, and
other such properties will be automatically scaled by Dyalog APL according to the
user's chosen display scaling factor. So if you specify an Edit object to be 80 pixels
wide and 20 pixels high, and the user's scaling factor is 150%, Dyalog will auto-
matically draw it 120 pixels wide and 30 pixels high. Dyalog will also de-scale
coordinate values reported by ⎕WG and event messages.

If Coord is 'Pixel', it is interpreted as either 'RealPixel' or
'ScaledPixel' according to the value of the DYALOG_PIXEL_TYPE para-
meter, which is either ScaledPixel or RealPixel. See Installation & Configuration
Guide: DYALOG_PIXEL_TYPE parameter.

If this parameter is not specified, the default is RealPixel. So by default, when you
set Coord to Pixel, it will be treated as RealPixel.

If Coord is 'User', the origin and scale of the co-ordinate system are defined by the
values of the YRange and XRange properties of the parent object. Each of these is a
2-element numeric vector whose elements define the co-ordinates of top left and bot-
tom right interior corners of the (parent) object respectively.

Note that if Coord is 'User' and you change the values of YRange and/or
XRange of the parent, the object (and all its siblings with Coord 'User') are
redrawn (and clipped) according to the new origin and scale defined for the parent.
The values of their Posn, Size and Points properties are unaffected. Changing
YRange and/or XRange therefore provides a convenient and efficient means to "pan
and zoom".

The Coord property for graphic objects created as children of a Grid may also be set
to Cell. Apart from being easier to compute, a graphic drawn using cell coordinates
will expand and contract when the grid rows and columns are resized.

Chapter 6: Object Reference Changes 85

Example:
This statement creates a button 10 pixels high, 20 pixels wide, and 5 pixels down
and along from the top-left corner of the parent Form T.

'T.B1'⎕WC'Button' 'OK'(5 5)(10 20)('Coord' 'Pixel')

If you set Coord to 'RealPixel' in the Root object '.', then query its Size, you
get the dimensions of the screen in pixels, i.e.

'.' ⎕WS 'Coord' 'RealPixel'
'.' ⎕WG 'Size'

480 640

If you set Coord to 'ScaledPixel' in the Root object '.', then query its Size,
you get the virtual resolution of the screen, i.e.

'.'⎕WS 'Coord' 'ScaledPixel'
'.'⎕WG'Size'

1080 1920

Chapter 6: Object Reference Changes 86

GesturePan Event 494

Applies To: ActiveXControl, Animation, Button, ButtonEdit, Calendar,
ColorButton, Combo, ComboEx, DateTimePicker, Edit, Form,
Group, List, ListView, MDIClient, ProgressBar, PropertyPage,
RichEdit, Scroll, Spinner, SubForm, TreeView

Description

This event is reported when the user touches one or two fingers on an object and
drags them .

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows :

[1] Object ref or character vector

[2] Event 'GesturePan' or 494

[3] Flags integer which reports the state of the gesture

[4] Location

2-element integer vector containing the y and x-position
respectively of the point at which the gesture applies. These
are reported in pixel coordinates relative to the origin (top-
left corner) of the object reporting the event.

[5] Distance

2-element integer vector containing the high and low parts
(words) of a 64-bit integer that indicates the distance
between the two fingers. This will be (0 0) if only one
finger is used.

The Flags parameter [3] which reports the state of the Gesture, is an integer with the
value 0, 1 (GF_BEGIN), 2 (GF_INERTIA), 4 (GF_END) or 6 (GF_END+GF_
INERTIA) with the following meanings:

Name Value Description

0 A gesture is in progress

GF_BEGIN 1 A gesture is starting.

GF_INERTIA 2 A gesture has triggered inertia.

GF_END 4 A gesture has finished.

The term inertia refers to built-in Windows processing which provides a standardised
user-interface including smooth acceleration and de-acceleration of an object.

Chapter 6: Object Reference Changes 87

When the user first touches an object and begins to drag his finger(s), the object gen-
erates a GesturePan event with a Flags parameter of 1 (GF_BEGIN). Subsequently,
if the user drags the object steadily it generates a series of GesturePan events with a
Flags parameter of 0. When the user lifts his finger(s) away, the object generates a
final GesturePan event, with a Flags parameter of 4 (GF_END).

If the user flicks an object, the system typically continues to generate GesturePan
events after the user has ceased to touch the object. These events are generated in
response to the acceleration and deceleration imparted by the flick, and the Flags
parameter for these generated events will be 2 (GF_INERTIA) followed (for the last
GesturePan event) by 6 (GF_END+GF_INERTIA).

No other event will be reported between the start and end of a series of GesturePan
events.

The associated callback is run immediately while the windows notification is still
on the stack. See Interface Guide: High-Priority Callback Functions.

Returning zero from the callback disables any default handling by the operating sys-
tem.

Chapter 6: Object Reference Changes 88

GesturePressAndTap Event 497

Applies To: ActiveXControl, Animation, Button, ButtonEdit, Calendar,
ColorButton, Combo, ComboEx, DateTimePicker, Edit, Form,
Group, List, ListView, MDIClient, ProgressBar, PropertyPage,
RichEdit, Scroll, Spinner, SubForm, TreeView

Description

This event is reported when the presses one finger on an object and then taps it with a
second finger.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows :

[1] Object ref or character vector

[2] Event 'GesturePressAndTap' or 497

[3] Flags integer which reports the state of the gesture

[4] Location

2-element integer vector containing the y and x-position
respectively of the point midway between the two fingers.
These are reported in pixel coordinates relative to the origin
(top-left corner) of the object reporting the event..

[5] Offset
3-element integer vector whose first element is (currently) 0
and whose second and third elements contain the (y,x)
offset of the second finger relative to the first.

The Flags parameter [3] which reports the state of the Gesture, is an integer with the
value 0, 1 (GF_BEGIN), or 4 (GF_END):

Name Value Description

0 A gesture is in progress

GF_BEGIN 1 A gesture is starting.

GF_END 4 A gesture has finished.

When the user taps with his second finger, the object generates a Ges-
turePressAndTap event with a Flags parameter of 1 (GF_BEGIN). Subsequently,
until the user removes his first finger, it generates a series of GesturePressAndTap
events with a Flags parameter of 0. When the user lifts his first finger away, the
object generates a final GesturePressAndTap event, with a Flags parameter of 4
(GF_END)

No other event will be reported between the start and end of a series of Ges-
turePressAndTap events.

Chapter 6: Object Reference Changes 89

The associated callback is run immediately while the windows notification is still
on the stack. See Interface Guide: High-Priority Callback Functions.

Returning zero from the callback disables any default handling by the operating sys-
tem.

Chapter 6: Object Reference Changes 90

GestureRotate Event 495

Applies To: ActiveXControl, Animation, Button, ButtonEdit, Calendar,
ColorButton, Combo, ComboEx, DateTimePicker, Edit, Form,
Group, List, ListView, MDIClient, ProgressBar, PropertyPage,
RichEdit, Scroll, Spinner, SubForm, TreeView

Description

This event is reported when the user touches two fingers on an object and twists them
clockwise or anticlockwise.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows :

[1] Object ref or character vector

[2] Event 'GestureRotate' or 495

[3] Flags integer which reports the state of the gesture

[4] Location

2-element integer vector containing the y and x-position
respectively of the point midway between the two fingers.
These are reported in pixel coordinates relative to the origin
of the screen.

[5] Angle
a scalar number which represents the angle of rotation of
the twist measured in radians (0 → ○2) from the x-axis in
a counter-clockwise direction.

The Flags parameter [3] which reports the state of the Gesture, is an integer with the
value 0, 1 (GF_BEGIN),or 4 (GF_END) with the following meanings:

Name Value Description

0 A gesture is in progress

GF_BEGIN 1 A gesture is starting.

GF_END 4 A gesture has finished.

Chapter 6: Object Reference Changes 91

When the user first touches two fingers on an object and begins to twist, the object
generates a GestureRotate event with a Flags parameter of 1 (GF_BEGIN). As the
user continues to twist his fingers, the object generates a series of GestureRotate
events with a Flags parameter of 0. When the user lifts one or both fingers away,
the object generates a final GestureRotate event, with a Flags parameter of 4 (GF_
END).

No other event will be reported between the start and end of a series of GestureRotate
events.

The associated callback is run immediately while the windows notification is still
on the stack. See Interface Guide: High-Priority Callback Functions.

Returning zero from the callback disables any default handling by the operating sys-
tem.

Chapter 6: Object Reference Changes 92

GestureTwoFingerTap Event 496

Applies To: ActiveXControl, Animation, Button, ButtonEdit, Calendar,
ColorButton, Combo, ComboEx, DateTimePicker, Edit, Form,
Group, List, ListView, MDIClient, ProgressBar, PropertyPage,
RichEdit, Scroll, Spinner, SubForm, TreeView

Description

This event is reported when the user taps two fingers at the same time on an object

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows :

[1] Object ref or character vector

[2] Event 'GestureTwoFingerTapn' or 496

[3] Flags integer which reports the state of the gesture

[4] Location

2-element integer vector containing the y and x-position
respectively of the point midway between the two fingers.
These are reported in pixel coordinates relative to the origin
(top-left corner) of the object reporting the event..

[5] Distance
2-element integer vector containing the high and low parts
(words) of a 64-bit integer that indicates the distance
between the two fingers.

The Flags parameter [3] which reports the state of the Gesture, is always an integer
with the value 5 (GF_BEGIN+GF_END).

Name Value Description

GF_BEGIN 1 A gesture is starting.

GF_END 4 A gesture has finished.

The associated callback is run immediately while the windows notification is still
on the stack. See Interface Guide: High-Priority Callback Functions.

Returning zero from the callback disables any default handling by the operating sys-
tem.

Chapter 6: Object Reference Changes 93

GestureZoom Event 493

Applies To: ActiveXControl, Animation, Button, ButtonEdit, Calendar,
ColorButton, Combo, ComboEx, DateTimePicker, Edit, Form,
Group, List, ListView, MDIClient, ProgressBar, PropertyPage,
RichEdit, Scroll, Spinner, SubForm, TreeView

Description

This event is reported when the user touches two fingers on an object and moves
them apart or towards each other.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows :

[1] Object ref or character vector

[2] Event 'GestureZoom' or 493

[3] Flags integer which reports the state of the gesture

[4] Location

2-element integer vector containing the y and x-position
respectively of the centre point of the zoom (the point
midway between the two fingers). These are reported in
pixel coordinates relative to the origin (top-left corner) of
the object reporting the event.

[5] Distance
2-element integer vector containing the high and low parts
(words) of a 64-bit integer that indicates the distance
between the two fingers.

The Flags parameter [3] which reports the state of the Gesture, is an integer with the
value 0, 1 (GF_BEGIN),or 4 (GF_END) with the following meanings:

Name Value Description

0 A gesture is in progress

GF_BEGIN 1 A gesture is starting.

GF_END 4 A gesture has finished.

Chapter 6: Object Reference Changes 94

When the user first touches two fingers on an object and begins to move them apart
or towards each other, the object generates a GestureZoom event with a Flags para-
meter of 1 (GF_BEGIN). As the user continues to moves the fingers apart or towards
each other, the object generates a series of GestureZoom events with a Flags para-
meter of 0. When the user lifts one or both fingers away, the object generates it gen-
erates a final GestureZoom event, with a Flags parameter of 4 (GF_END).

No other event will be reported between the start and end of a series of GestureZoom
events.

The associated callback is run immediately while the windows notification is still
on the stack. See Interface Guide: High-Priority Callback Functions.

Returning zero from the callback disables any default handling by the operating sys-
tem.

Chapter 6: Object Reference Changes 95

Event Property

Applies To: ActiveXContainer, ActiveXControl, Animation, Bitmap,
BrowseBox, Button, ButtonEdit, Calendar, Circle, Clipboard,
ColorButton, Combo, ComboEx, CoolBand, CoolBar, Cursor,
DateTimePicker, Edit, Ellipse, FileBox, Form, Grid, Group, Icon,
Image, ImageList, Label, List, ListView, Locator, Marker,
MDIClient, Menu, MenuBar, MenuItem, Metafile, MsgBox,
OCXClass, OLEClient, OLEServer, Poly, Printer, ProgressBar,
PropertyPage, PropertySheet, Rect, RichEdit, Root, Scroll,
Separator, SM, Spinner, Splitter, Static, StatusBar, StatusField,
SubForm, SysTrayItem, TabBar, TabBtn, TabButton, TabControl,
TCPSocket, Text, Timer, TipField, ToolBar, ToolButton,
ToolControl, TrackBar, TreeView, UpDown

Description

This property defines how an object responds to user actions. Unlike other properties
which only have a single value, this property has a value corresponding to each of
the different types of event that may be generated by a particular object. Con-
sequently the syntax for setting the Event property differs from the general syntax
that applies to other properties.

Two syntactic forms are allowed:

l A 3 or 4-item vector containing the property name 'Event', followed by
the Event Type(s), a value which determines the action to be taken, and an
optional array that will be supplied as a left argument to the callback func-
tion

l A composite vector whose first element contains the property name
'Event', followed by a series of 2 or 3-element vectors, each defining the
action to be taken for a different Event Type (or types).

Examples
'Event' 'MouseUp' 'foo' 88
'Event' ('MouseUp' 'MouseDown') 'foo' 88
'Event' ('MouseUp' 'foo' 88)('MouseDown' 'goo')

Like any other property, the Event property can be set using assignment. However,
certain special considerations apply which are discussed later.

Chapter 6: Object Reference Changes 96

When you specify the Event property using ⎕WC or ⎕WS, the action to be taken for an
event type or types is specified by a 2 or 3-element vector containing:

Element Item Description

[1] Type(s) see below

[2] Action

numeric scalar or character vector
¯1 inhibit (ignore) event

0 handle event, do not report to APL

1 handle event, then report to APL

fn name of callback function

fn&
name of callback function to be
executed asynchronously

⍎expr expression to be executed

[3] Arg any array (optional)

Event Types
The first element, Type(s)may be one of the following:

l A character vector containing an event name (for example 'MouseUp')
l A numeric scalar containing an event number (for example 2). If the number

is not one of the built-in event numbers generated by the object, it is
assumed to be a user-defined event which can (only) be generated ana-
grammatically using ⎕NQ

l A vector of character vectors containing a list of event names, for example
('MouseDown' 'MouseUp'). This may be used as a shortcut to asso-
ciate several different types of events with the same action

l An Event name preceded by the string 'on' (for example'onMouseUp')
l An event number preceded by the string 'on' (for example 'on99'). This

syntax is intended for user-defined events although it can be used with reg-
ular events too.

The onEvent syntax causes all objects reported in the event message (see below) to
be identified by a ref. Otherwise, objects reported in the event message are identified
by name.

Chapter 6: Object Reference Changes 97

Action
Inhibit (¯1)
If Action is set to ¯1, the event is inhibited (if possible) by APL. If, for example, you
set the action on a KeyPress event to ¯1, all keystrokes for the object in question will
be ignored. Similarly, if you set the action on a Close event for a Form to ¯1, the user
will be unable to close the Form. This is possible because APL intercepts most events
before Windows itself takes any action. However, certain events (e.g. focus change
events) are not notified to APL until after the event has occurred and afterWindows
has itself responded in some way. In these circumstances it is not always practical for
APL to undo what Windows has already done, and an action code of ¯1 is treated as
if it were 0. For further details, see the individual entries for each event type in this
chapter.

Default Processing (0)
If Action is set to 0 (the default), the event is processed by APL and Windows in the
normal way (this is referred to herein as the default processing) but your program is
not notified in any way that the event has occurred. For example, the default pro-
cessing for a keystroke is to action it and either echo a character in the object or per-
form some other appropriate function.

Terminate ⎕DQ (1)
If Action is set to 1, the event is first processed by APL (and Windows) in the normal
way, then ⎕DQ terminates, returning an event message as its result. The format of the
event message is given under the description of each event type.

Chapter 6: Object Reference Changes 98

Callback (function name)
If Action is set to a character vector that specifies the name of a function, this function
(termed a callback) will be executed automatically by ⎕DQ every time the event
occurs. The function may be a traditional defined function or a dfn.

A traditional defined function may be monadic, dyadic, or niladic. If dyadic, the left
argument may be optional. A niladic callback may be appropriate if the function can
perform its task without needing to interrogate the event message.

Unless the callback function is niladic, it will be supplied a right argument (⍵ for a
dfn) containing the event message and a left argument (⍺ for a dfn) of the value of the
array Arg (if specified).

The function may be defined to return no result, a result, or a shy result. The result
determines how the event is handled.

The default processing of the event is deferred until after the callback has been run,
and may be inhibited or modified by its result. If the callback function returns no res-
ult, or returns a scalar 1, normal processing of the event is allowed to continue as
soon as the callback completes. If the callback returns a scalar 0, normal processing of
the event is inhibited and the effect is identical to setting Action to ¯1. A callback
function may also return an event message as its result. If so, ⎕DQ will action this
event rather than the original one that fired the callback.

If a callback function does not exist at the instant it is invoked, ⎕DQ terminates with
a VALUE ERROR. However, the name of the missing function is reported in the
Status Window.

Asynchronous Callback (function name followed by &)
If Action is set to a character vector that specifies the name of a callback function, fol-
lowed by the character &, the callback function will be executed asynchronously in a
new thread when the event occurs.

For example, the event specification:

'Event' 'onSelect' 'DoIt&'

tells ⎕DQ to execute the callback function DoIt asynchronously as a thread when a
Select event occurs on the object. Note that a callback function executed in this way
should not return a result (because ⎕DQ does not wait for it) and any result will be dis-
played in the Session window.

Chapter 6: Object Reference Changes 99

Execute
If action code is set to a character vector whose first element is the execute symbol
(⍎) the remaining string will be executed automatically whenever the event occurs.
The default processing for the event is performed first and may not be changed or
inhibited in any way.

Notice that when you specify the action to be taken on the occurrence of an event
there is a great difference between 'FOO' and '⍎FOO'. The former causes APL to
invoke the function FOO as a callback function. If the function takes an argument,
APL will supply it with the event message. Secondly, the result (if any) of the func-
tion FOO will be used by APL and may cause the event to be disabled or changed in
some way. In the second case, APL will perform the default processing for the event
and then execute FOO without supplying an argument. If the function returns a result,
it will be displayed in the Session.

Optional Left Argument (Arg)
If specified, Arg is an array whose value will be passed as the left argument to a call-
back function when that particular event (or events) is generated. Note that this is a
constant defined when the value is assigned to the Event property.

If the callback function is defined to take an explicit left argument and Arg was not
specified, the call will fail with the error message:

SYNTAX ERROR: The function requires a left argument

If the callback function is defined to take an optional left argment and Arg was not
specified, a reference to the left argument (⍺ for a dfn) will generate VALUE ERROR.

Chapter 6: Object Reference Changes 100

Event Message
When a callback function is invoked by ⎕DQ, the corresponding event message is
supplied as its right argument. The event message is a vector whose first 2 elements
identify the object that generated the event and the type of the event. Additional ele-
ments may be provided, depending upon the type of the event.

The same event message is returned as a (shy) result by ⎕DQ when it is terminated by
an event whose Action is set to 1.

Object(s)
The first element of the event message always identifies the object that generated the
event. Other elements may identify other objects associated with the event. For
example, a DragDrop event reports both the object being dropped, and the object on
which it is being dropped.

Objects are identified by names or refs. If the Event property was set using the
onEvent syntax (whereby the event name or number is prefixed by the string 'on'),
for example, 'onSelect' or 'on99', objects are identified by refs. This is also
true if the object which generated the event has no name (i.e. was created by ⎕NEW).
Otherwise, objects are identified by ther names.

Event Type
If, when the event type was specified it was identified by its name, the second ele-
ment of the event message will be a character vector containing that name. If it was
identified by its number, the second element of the event message will be an integer
containing that number. If the event type was identified using the onEvent syntax,
the second element of the event message will be a character vector containing the pre-
fix 'on' followed by the event name, even if it had been specified by number. The
exception is that if the event is a user-defined event, the second element of the event
message will be a character vector containing the prefix 'on' followed by the char-
acter representation of the user-defined event number.

Chapter 6: Object Reference Changes 101

Specifying the Event property using Assignment
There are two ways to specify the Event property using assignment; you can specify
the entire set of events, or you can set events one by one (see below).

To specify the entire set of events, you assign an array to the Event property. The
array must contain one or more nested vectors, each containing 2 or 3 elements (Type,
Action and optionally Arg) as described above.

Example (F1 is a Form)
F1.Event ← 'onMouseDown' 'FOO'

Means: invoke callback function FOO on MouseDown, the first element of the right
argument to FOO will contain a namespace reference to F1. All other events perform
their default actions.

Example
F1.Event ← 'MouseDown' 'FOO'

Means: invoke callback function FOO on MouseDown, the first element of the right
argument to FOO will contain the character vector'F1'. All other events perform
their default actions.

Example
F1.Event ← ('onMouseDown' 'FOO')('onMouseUp' 'FOO')

Means: invoke callback function FOO on MouseDown and MouseUp. All other
events perform their default actions.

Example
F1.Event, ← ⊂ 'onMouseMove' 'FOO' ('THIS' 1)

Means: add a callback function FOO on the MouseMove event. The function will
receive the array('THIS' 1) as its left argument. All other events perform their
default actions.

Chapter 6: Object Reference Changes 102

Specifying Individual Event types using Assignment
To define the action to be taken for individual events, one by one, you use the
onEvent syntax and make the assignment to the event name prefixed by the string
'on'.

Example
F1.onMouseDown ← 'FOO'

Means: invoke callback function FOO on MouseDown.

Example
F1.onMouseUp ← 'FOO'

Means: add the same callback for MouseUp.

Example
F1.onMouseMove ← 'FOO' ('THIS' 1)

Means: add the same callback function FOO for the MouseMove event. The function
will receive the array ('THIS' 1) as its left-argument.

Notice that you must use the 'on' prefix; you cannot assign to the Event name
itself. This would cause an error:

F1.MouseUp←'foo'
SYNTAX ERROR: Invalid modified assignment, or an attempt
was made to change nameclass on assignment

F1.MouseUp←'foo'
∧

Specifying the Event property using ⎕WC and ⎕WS
When you set the Event property using ⎕WC and ⎕WS you define the actions for the
event types that you specify in the argument, leaving the actions for all other event
types unchanged. When you create an object with ⎕WC, all unspecified event types
will be unhandled; i.e. those events will perform the default processing. However,
when you specify the action for a new event type using ⎕WS, any actions previously
defined for other event types will remain as they were.

Chapter 6: Object Reference Changes 103

Examples using Event Names
Ignore MouseDown (1) event (APL will perform the default processing for you)

'F1' ⎕WS 'Event' 'MouseDown' 0

Terminate ⎕DQ on MouseDown

'F1' ⎕WS 'Event' 'MouseDown' 1

Invoke callback function FOO on MouseDown, the first element of the right argu-
ment to FOO will contain a namespace reference to F1

'F1' ⎕WS 'Event' 'onMouseDown' 'FOO'

Invoke callback function FOO on MouseDown, the first element of the right argu-
ment to FOO will contain the character vector 'F1'

'F1' ⎕WS 'Event' 'MouseDown' 'FOO'

Invoke callback function FOO on MouseDown and MouseUp

'F1' ⎕WS 'Event' ('onMouseDown' 'onMouseUp') 'FOO'

Invoke callback function FOO with ('THIS' 1) as its left-argument on
MouseDown

'F1' ⎕WS 'Event' 'onMouseDown' 'FOO' ('THIS' 1)

Invoke callback function FOO with ('THIS' 1) as its left-argument on
MouseDown, MouseUp and MouseMove

EV ← 'onMouseDown' 'onMouseUp' 'onMouseMove'
'F1' ⎕WS 'Event' EV 'FOO' ('THIS' 1)

Execute the expression COUNT+←1 on MouseDown

'F1' ⎕WS 'Event' 'MouseDown' '⍎COUNT+←1'

Execute the expression COUNT+←1 on MouseDown, MouseUp and MouseMove

EV ← 'MouseDown' 'MouseUp' 'MouseMove'
'F1' ⎕WS 'Event' EV '⍎COUNT+←1'

Chapter 6: Object Reference Changes 104

Examples using Event Numbers
Ignore MouseDown (1) event (APL will perform the default processing for you)

'F1' ⎕WS 'Event' (1 0)
'F1' ⎕WS 'Event' 1 0 ⍝ Ditto

Terminate ⎕DQ on MouseDown

'F1' ⎕WS 'Event' (1 1)
'F1' ⎕WS 'Event' 1 1 ⍝ Ditto

Call function FOO on MouseDown

'F1' ⎕WS 'Event' (1 'FOO')
'F1' ⎕WS 'Event' 1 'FOO' ⍝ Ditto

Call function FOO on MouseDown and MouseUp

'F1' ⎕WS 'Event' ((1 2) 'FOO')
'F1' ⎕WS 'Event' (1 2) 'FOO' ⍝ Ditto
'F1' ⎕WS 'Event' 1 2 'FOO' ⍝ Ditto
'F1' ⎕WS 'Event' (1 'FOO')(2 'FOO') ⍝ Ditto

Call function FOO with ('THIS' 1) as its left-argument on MouseDown

'F1' ⎕WS 'Event' (1 'FOO' ('THIS' 1))
'F1' ⎕WS 'Event' 1 'FOO' ('THIS' 1) ⍝ Ditto

Call function FOO with ('THIS' 1) as its left-argument on MouseDown and
MouseUp

'F1' ⎕WS 'Event' ((1 2) 'FOO' ('THIS' 1))
'F1' ⎕WS 'Event' (1 2) 'FOO' ('THIS' 1) ⍝ Ditto
'F1' ⎕WS 'Event' 1 2 'FOO' ('THIS' 1) ⍝ Ditto
'F1' ⎕WS 'Event' 1 2 'FOO' ('THIS' 1) ⍝ Ditto

Execute the expression COUNT+←1 on MouseDown

'F1' ⎕WS 'Event' 1 '⍎COUNT+←1'

Execute the expression COUNT+←1 on MouseDown, MouseUp and MouseMove

'F1' ⎕WS 'Event' (1 2 3) '⍎COUNT+←1'
'F1' ⎕WS 'Event' 1 2 3 '⍎COUNT+←1' ⍝ Ditto

Chapter 6: Object Reference Changes 105

User defined Events
In addition to the standard events supported directly by Dyalog APL, you may spe-
cify your own events. For these, you must use event numbers; user-defined event
names are not allowed.

You may use any numbers not already defined, but it is strongly recommended that
you choose numbers greater than 1000 to avoid potential conflict with future releases
of Dyalog APL.

You can only generate user-defined events under program control with ⎕NQ.

Examples
∇ foo m

[1] ⎕SE.UCMD'display m'
∇

'f'⎕WC'Form' ('Event' 1001 'foo')
f.Event

1001 #.foo
⎕NQ 'f' 1001

┌→─────────┐
│ ┌→┐ │
│ │f│ 1001 │
│ └─┘ │
└∊─────────┘

'f' ⎕WS 'Event' 1002 'foo'
f.Event

1001 #.foo 1002 #.foo
⎕NQ 'f' 1002

┌→─────────┐
│ ┌→┐ │
│ │f│ 1002 │
│ └─┘ │
└∊─────────┘

Notice that if you use the onEvent syntax, the event property reports the event type
as you specified, but the callback function receives just the number as before.

f.on1003←'foo'
f.Event

1001 #.foo 1002 #.foo on1003 #.foo
⎕NQ 'f' 1003

┌→─────────┐
│ #.f 1003│
└+─────────┘

Chapter 6: Object Reference Changes 106

Notes
Resetting (clearing) the Event Property
If no events are set, the result obtained by ⎕WG and the result obtained by referencing
Event directly are different:

'F'⎕WC'Form'
DISPLAY 'F'⎕WG'Event'

.→--.
|0 0|
'~--'

DISPLAY F.Event
.⊖------------.
| .→--------. |
	.⊖. .⊖.					
	'-' '-'					
'∊--------'						
'∊------------'

To reset the Event property, the same (different) values must be used accordingly:

f.Event←0⍴⊂'' ''

or

'f'⎕ws'Event' 0 0

onEvent Syntax with Event Numbers
If you use the onEvent syntax with built-in event numbers, the effect is the same as if
you had used the event name. This does not apply to user-defined events.

Example
'f'⎕WC'Form'
f.on2←'foo'
f.Event

onMouseUp #.foo
∇foo∇

∇ foo m
[1] ⎕SE.UCMD'display m'

∇
┌→──┐
│ ┌→──────┐ │
│ #.f │MouseUp│ 24.81481552 73.33333588 1 0 │
│ └───────┘ │
└∊──┘

This differs from the behaviour when you use event number normally:

Example

Chapter 6: Object Reference Changes 107

'f'⎕WC'Form'
'f' ⎕ws 'Event' 2 'foo'
f.Event

2 #.foo
┌→──────────────────────────────────┐
│ ┌→┐ │
│ │f│ 2 52.77777863 13.22916698 1 0 │
│ └─┘ │
└∊──────────────────────────────────┘

Callback Names
When you query the Event property using ⎕WG, names of callbacks associated with
events are reported exactly as they were set. When you reference the Event property,
the names are reported as absolute pathnames.

)ns x
#.x

)cs x
#.x

'f'⎕WC'form'
f.onMouseUp←'foo'
f.Event

┌───────────────────┐
│┌─────────┬───────┐│
││onMouseUp│#.x.foo││
│└─────────┴───────┘│
└───────────────────┘

'f'⎕wg'event'
┌───────────────┐
│┌─────────┬───┐│
││onMouseUp│foo││
│└─────────┴───┘│
└───────────────┘

)cs
#

#.x.f.Event
┌───────────────────┐
│┌─────────┬───────┐│
││onMouseUp│#.x.foo││
│└─────────┴───────┘│
└───────────────────┘

'#.x.f'⎕wg'Event'
┌─────────────────┐
│┌─────────┬─────┐│
││onMouseUp│x.foo││
│└─────────┴─────┘│
└─────────────────┘

Chapter 6: Object Reference Changes 108

Spelling Event Names
When using regular event names, case is unimportant. For example, the system will
accept 'MouseUp', 'MOUSEUP' or even 'mOuSeUp'. When using the onEvent
syntax, case is critical. The 'on'must be in lower-case and the case of the event
name must be spelled exactly as documented. In all cases, the event name will be
reported using the documented spelling.

Special Case for All events
The event number 0 and the event name 'All', are convenient shorthands to spe-
cify all built-in events supported by an object.

Example
'f'⎕WC'Form' ('Event' 'All' 1)
f.Event

All 1
⎕←⎕DQ 'f'

f Create 1

Chapter 6: Object Reference Changes 109

Masked Property

Applies To: ImageList

Description

The Masked property specifies whether or not the ImageList will contain opaque or
transparent images. It may be 0, 1(the default) or 2.

Masked must be established when the ImageList is created by ⎕WC and may not sub-
sequently be altered. An inappropriate value ofMasked will cause the images to be
drawn incorrectly.

If Masked is 0, the ImageList expects opaque BitMap objects.

If Masked is 1, the ImageList expects low-colour (4-bit or 8-bit) Icon objects whose
transparency is defined by their Mask property.

If Masked is 2, the ImageList expects BitMap or Icon objects whose alpha channel
(the degree of transparency of each pixel) is encoded in their CBits property, along
with the colours.

If Masked is 3 and Native Look and Feel (see page 110) is enabled, the behaviour is
the same as if Masked were 2. If Native Look and Feel is not enabled, it behaves as if
Masked were 1. This setting provides the greatest degree of portability for applic-
ations whose users may or may not have Native Look and Feel enabled. This value is
used for the ImageLists on the Dyalog Session CoolBars.

Chapter 6: Object Reference Changes 110

Native Look and Feel
Windows Native Look and Feel is an optional feature ofWindows fromWindows
XP onwards.

IfNative Look and Feel is enabled, user-interface controls such as Buttons take on a
different appearance and certain controls (such as the ListView) provide enhanced
features.

Dyalog Session
During development, both the Dyalog Session and the Dyalog APL GUI will display
native style buttons, combo boxes, and other GUI components ifNative Look and
Feel is enabled. The option is provided in the General tab of the Configuration dia-
log.

Applications
There are two ways to enable Native Look and Feel in end-user applications.

If you use the File/Export… menu item on the Session MenuBar to create a bound
executable, an OLE Server (in-process or out-of-process), an ActiveX Control or a
.NET Assembly, check the option box labelled Enable Native Look and Feel in the
create bound file dialog box. See User Guide.

If not, set the XPLookandFeel parameter to 1, when you run the program. For
example:

dyalogrt.exe XPLookAndFeel=1 myws.dws

Note that to have effect,Native Look and Feelmust also be enabled at the Win-
dows level.

Chapter 7: UNIX Specific Features 111

Chapter 7:

UNIX Specific Features

Summary
This section summarises the change specific to Dyalog APL Version 14.1 on UNIX-
based platforms. This list currently consists of:

l AIX
l Linux (including the Raspberry Pi)
l OS X

Trace on Error
FromDyalog 14.1 onwards UNIX-based versions of Dyalog now open the tracer win-
dows when an error occurs in the application. This brings UNIX-based versions in
line with the Windows version.

This is controlled via the environment variable TRACE_ON_ERROR, which is set
in the startup script. The previous behaviour can be configured by setting this envir-
onment variable to 0 or unsetting the environment variable.

The LoadData workspace
The loaddata workspace is included with Unicode editions of Dyalog APL Version
14.1. Note that the LoadXL and SaveXL functions will not run on UNIX-based ver-
sions of Dyalog since they require OLEControls. Note also that the SQL functions
(and indeed to SQAPL workspace (where included)) require ODBC drivers to be
installed before they will function correctly.

RIDE_SPAWNED environment variable
On certain platforms the Dyalog RIDE spawns a Dyalog interpreter. In such cases)
SH on its own, and calls to ⎕SR will apparently hang the interpreter because it is

Chapter 7: UNIX Specific Features 112

waiting for input to the old-style session. If RIDE_SPAWNED is set to 1, in these
two instances an error is generated instead.

Index 113

Index

A

arbitrary input 48
arbitrary output 50
AUTODPI parameter 4, 6

B

Bug Fixes 34

C

capsule 37
Close .NET AppDomain 65
Compiler 58
control structures

disposable 45
Coord 83
Coord property 4-5, 64
copying component files 55
creating component files 53

D

disposable statement 45
DPI-Aware 4, 6
DYALOG_PIXEL_TYPE 5
DYALOG_PIXEL_TYPE parameter 64

E

editing APL objects 51
editor 51
Event 95
Events

GesturePan 86
GesturePressAndTap 88
GestureRotate 90

GestureTwoFingerTap 92
GestureZoom 93

execute expression 59
Experimental I-Beams 58
External Workspaces 58

F

file
copy 55
create 53
library 34

files
APL component files 53, 55

Font object 5

G

gesture events 8
gesturedemo.dws 2
GesturePan 86
GesturePressAndTap 88
GestureRotate 90
gestures 8
GestureTwoFingerTap 92
GestureZoom 93

H

high-priority callback function 10

I

i-beam
execute expression 59
JSON export 76
JSON import 70
JSON translate name 79
JSON truefalse 78
loaded libraries 62
mark thread as uninterruptible 66
overwrite free pockets 60
use separate thread for .NET 67

inertia 9
Interoperability 24

Index 114

J

JSON export 76
JSON import 70
JSON name mangling 80
JSON translate name 79
JSON truefalse 78

K

Key Features 1
Key operator 27

L

libraries of component files 34
loaded libraries 62

M

manifest file 6
mark thread as uninterruptible 66
Masked 109
Miscellaneous Enhancements 37

N

Native Look and Feel 110

O

overwrite free pockets 60

P

Performance Improvements 31
Properties

Coord 83
Event 95
Masked 109

R

Rank operator 27

RealPixel 4, 64
RIDE 43
RIDE_INIT parameter 42
RIDE_SPAWNED parameter 43

S

ScaledPixel 4, 64
System Requirements 23

U

use separate thread for .NET 67

V

Variant operator 27

W

Windows Presentation Foundation 40, 67
WSEXT parameter 38

X

XP Look and Feel 110

